
U. S. DEPARTMENT OF COMMERCE

National Bureau of Standards

PROPOSED REVISION

OF

AMERICAN NATIONAL STANDARD

COBOL

January 1974

For Review Purposes Only

NBS-1 I4A (REV. 7-73)

U.S. Dt^r-,.Or ^OMM.]. Hi:|iij(A HON OK R l' P I "» K 1 ' NO- 2. Uov't Accession RiRi !nr;i?APHir data /

A'^S if? 7 V' ̂ ^7

3. Kccipieni's Accession No.

4. Tl TL.i-; \Nr' >L is 1 1 1 LI-:

Proposed Revision of American National Standard COBOL

5. l-'ubl ic anon Date

6. Performing Organization Code

7. AU rHOi'> >'i American National Standards Institute Committee X3J4
8. P e r f c* r f 1 1 1 n g Orgiiii. Retort iS'.j,

9. PERFORMING ORGANIZATION NAME AND ADDRESS

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COM.V.ERCE
WASHINGTON D C 20234

10. Project/Task/Work Ur;it No.

11. Contract , Grant No.

12. Sponsoring Organization Namv and Complete Address (Street, City, State, ZIP)

American National Standards Institute

1430 Broadway
New York, new York lUUlo

13. Type of Report Period Covered

14. Sponsoring Agency Code

15. SUPPLEMENTARY NO ! ES

16. ABSTRACT (A 200-word or less {actual summary of most significant information. If document includes a significant
bibliography or literature survey, mention it here.)

This document is for review purpose only in anticipation of its becoming
an American National Standard and subsequent adoption as a Federal Information
Processing Standard. The American National Standard COBOL defines the elements

of the COBOL programming language and the rules for their use. The standard

is used by implementors as the reference authority in developing compilers and
by users for writing programs in COBOL. The primary purpose of the standard
is to promote a high degree of interchangeabi 1 i ty of programs for use on a
variety of automatic data processing systems.

17. KEY WORDS (six to twelve entries; alphabetical order; capitalize only the first letter of the first key word unless a proper
name; separated by semicolons)

COBOL; data processing; Federal Information Processing Standard; information inter-
change; information processing; programming language; software.

18. AVAILABILITY [X_ Unlimited

I For Off icial Distribution. Do Not Release to NTIS

I ' Order From Sup. of Doc, U.S. Government Printing Office
Washington, D.C. 20 102, S:^ Cat. No. C I ■■

19, SECURITY CLASS
(THIS REPORT)

UNCL ASSIFIED

X_ Order From National Technical Iniormation Service (N I'l'^'l Springfield, Virginia 22151

20. SECURITY CLASS

(THIS PAGE)

UNCLASSIFIED

21. NO. OF PAGES

544

22. Price

USCOMM-OC 29^42-.=

\

U.S. DEPARTMENT OF COMMERCE

National Bureau of Standards

PROPOSED REVISION

OF

AMERICAN NATIONAL STANDARD

COBOL

ianyary, 1974

For Review Purposes Only

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL report and specifica-
tions in whole or in part, using ideas from this report as the basis for an

instruction manual or for any other purpose, is free to do so. However, all

such organizations are requested to reproduce the following acknowledgment ^
paragraphs in their entirety as part of the preface to any such publication.

Any organization using a short passage from this document, such as in a book

review, is requested to mention "COBOL" in acknowledgment of the source, but
need not quote the acknowledgment.

COBOL is an industry language and is not the property of any company or

group of companies, or of any organization or group of organizations.

No warranty, expressed |or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material ysed herein

FLOW-MATIC (trademark of Sperry Rand Corporation) , Programming
for the Univac (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator

Form No. F 28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760 ,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

5-73 ii

FOREWORD

(This foreword is not a part of American National Standard COBOL, X3.23-197A.)

This American National Standard is a revision of American National Standard

COBOL, X3. 23-1968. The language specifications contained in this standard
were drawn from both the American National Standard COBOL, X3. 23-1968, and the

CODASYL COBOL Journal of Development. Like X3. 23-1968, this standard provides
specifications for both the form and interpretation of programs expressed in
COBOL. It is intended to provide a high degree of machine independence in

such programs in order, to permit their use on a variety of automatic data
processing systems.

The organization of COBOL specifications in this standard is based on a
functional processing concept. The standard defines a Nucleus and eleven

functional processing modules: Table Handling, Sequential I-O, Relative

I-O, Indexed I-O, Sort-Merge, Report Writer, Segmentation, Library, Debug,
Inter-Program Communication, and Communication. Each module contains two
or three levels with nine modules having a null set as the lowest level. In
all cases, lower levels are proper subsets of the higher levels within the
same module. The minimum standard is defined as the low level of fhe Nucleus

plus the low level of the Table Handling and Sequential I-O modules. Full
American National Standard COBOL is defined as the highest level of the
Nucleus and the eleven processing modules. The major technical differences

between this standard and its predecessor, X3. 23-1968, are detailed in

Appendix B on pages XIV-9 through XIV-34.

The American National Standards Technical Committee responsible for this

standard, X3J4, evolved from Committee X3.4.4 and its subordinate working
groups (the bodies responsible for the original COBOL standard) . X3J4 began
the task of preparing a revision of the COBOL standard in 1969 with the
development of criteria against which each candidate for inclusion in the
proposed revision was to be matched. Detailed work on the revision began in
early 1970 and, with the committee meeting every four to six weeks, a draft
proposed revision was completed in June 1972. COBOL Information Bulletins 14,

15 and 16, published in the first half of 1972, kept the COBOL community
informed on the progress being made.

The American National Standards Committee on Computers and Information

Processing, X3, approved the publication of the draft proposed revision in
July 1972 and the full text of the proposed revision was made available to
the community for comment in September 1972.

In xxxx 1974 X3 proposed that the revised specification be adopted as an
American National Standard. The American National Standards Institute

approved the revision as an American National Standard on xxxx 1974.

The American National Standards Committee on Computers and Information

Processing, X3, had the following members at the time it approved this
standard:

X3 membership list needed here

iii

The American National Standards Technical Committee X3J4, which developed
this standard, had the following personnel:

R. Kearney, Chairman J. Couperus, Vice Chairman

P. A. Beard, Secretary

G. Abrams D. N . Gumiha
D. G. Ashland

C.
R. Kelleher

G. N. Baird
C.

L. Kent
R. M. Barton J. N. Kirkeng

R. P. Belmont
A.

M. Nienhaus
W. E. Bender P. Olshansky

R. F. Betscha W. C. Rinehuls
J. E. Bishop

S.
Root

R. M. Bland R. E. Rountree, Jr.
J. Collica S. D. Schiffman
M. D, Dent R. Solt
J. P. Desmond L. J. Soma
N. 0. Eaddy J. J. Strain
M. Fedora

L.
Sturges

R. C. Fredette D. L. Tucker
P. R. Gustafson M. Vickers

Others who contributed to the work on the revision were as follows:

H. Bromberg A. N. McMahan
C. K. Cheng R. M.

Opsata J. S. Cousins R.
S.

Pettus
R. L. Dover M.

L.
Rakes t raw

H. R. Fletcher
R.

R.
Risley

H. S. Gile C. A. Schulz
G. H. Goe J. G. Solomon
J. S. Grant D.

F.
Wendell

H. Hicks C. E. Wilder
J. Hoi low ay

The members of Technical Committee X3J4 wish to note the special contribu-
tion of the secretary, Miss P. A. Beard, whose devotion and hard work made

this revision possible.

iv

TABLE OF CONTENTS

SECTION I: INTRODUCTORY INFORMATION

Chapter 1. Introduction to the Standard

1.1 Scope and Purpose I-l
1.2 Structure of Language Specifications I-l
1.3 Organization of Document 1-3
1.4 How To Use The Standard 1-3
1.5 Definition of an Implementation of American

National Standard COBOL 1-4

1.6 Implementor-Def ined Language Specifications 1-7
1.7 Elements That Pertain To Specific Hardware Components 1-8
1.8 Shorthand Notation 1-9

Chapter 2. List of Elements by Module

2.1 General Description I-IO
2.2 Nucleus, Level 1 (1 NUC 1,2) I-ll

2.3 Nucleus, Level 2 (2 NUC 1,2) 1-16
2.4 Table Handling, Level 1 (1 TBL 1,2) 1-19
2.5 Table Handling, Level 2 (2 TBL 1,2) 1-20
2.6 Sequential I-O, Level 1 (1 SEQ 1,2) 1-21
2.7 Sequential I-O, Level 2 (2 SEQ 1,2) 1-23
2.8 Relative I-O, Level 1 (1 REL 0,2) 1-24
2.9 Relative I-O, Level 2 (2 REL 0,2) 1-26
2.10 Indexed I-O, Level 1 (1 INX 0,2) 1-27
2.11 Indexed I-O, Level 2 (2 INX 0,2) 1-29
2.12 Sort-Merge, Level 1 (1 SRT 0,2) 1-30
2.13 Sort-Merge, Level 2 (2 SRT 0,2) 1-31
2.14 Report Writer, Level 1 (1 RPW 0,1) 1-32
2.15 Segmentation, Level 1 (1 SEG 0,2) 1-34
2.16 Segmentation, Level 2 (2 SEG 0,2) 1-34
2.17 Library, Level 1 (1 LIB 0,2) 1-35
2.18 Library, Level 2 (2 LIB 0,2) 1-35
2.19 Debug, Level 1 (1 DEB 0,2) 1-36
2.20 Debug, Level 2 (2 DEB 0,2) 1-36
2.21 Inter-Program Communication, Level 1 (1 IPC 0,2) 1-37
2.22 Inter-Program Communication, Level 2 (2 IPC 0,2) 1-37
2.23 Communication, Level 1 (1 COM 0,2) 1-38
2.24 Communication, Level 2 (2 COM 0,2) 1-39

Chapter 3. List of Elements Showing Disposition

3.1 General Description 1-40

Chapter 4. Glossary

4.1 Introduction 1-52
4.2 Definitions 1-52

V

Chapter 5. Overall Language Consideration

j
5.1 Introduction. 1-72

5.2 Notation Used in Formats and Rules 1-72

5.3 Language Concepts 1-75
5.4 Identification Division 1-94

5.5 Environment Division .' 1-95
5.6 Data Division 1-97
5.7 Procedure Division 1-99
5.8 Reference Format 1-105
5.9 Reserved Words 1-109

Chapter 6. Composite Language Skeleton

6.1 General Description . . I-lll

I
SECTION II: NUCLEUS

Chapter 1. Introduction to the Nucleus

1.1 Function II-l
.1,2 Level Characteristics II-l

1.3 Level Restrictions on Overall Language II-l

Chapter 2. Identification Division in the Nucleus

2.1 General Description II-2
2.2 Organization II-2

2.3 The PROGRAM-ID Paragraph II-3
2.4 The DATE-COMPILED Paragraph II-4

Chapter 3. Environment Division in the Nucleus

3.1 Configuration Section II-5

3.1.1 The SOURCE-COMPUTER Paragraph II-5
3.1.2 The OBJECT-COMPUTER Paragraph II-6
3.1.3 The SPECIAL-NAMES Paragraph II-8

Chapter 4. Data Division in the Nucleus

4.1 Working-Storage Section 11-11
4.2 The Data Description - Complete Entry Skeleton 11-12
4.3 The BLANK WHEN ZERO Clause 11-14
4.4 The Data-Name or FILLER Clause 11-15
4.5 The JUSTIFIED Clause 11-16
4.6 Level-Number 11-17
4.7 The PICTURE Clause 11-18
4.8 The REDEFINES Clause 11-27
4.9 The RENAMES Clause 11-29
4.10 The SIGN Clause 11-31
4.11 The SYNCHRONIZED Clause 11-33
4.12 The USAGE Clause 11-35
4.13 The VALUE Clause 11-36

vi

Chapter 5. Procedure Division in the Nucleus

5.1 Arithmetic Expressions 11-39
5.2 Conditional Expressions 11-41
5.3 Common Phrases and General Rules for Statement Formats. . . . 11-50
5.4 The ACCEPT Statement 11-53

5.5 The ADD Statement '. 11-55
5.6 The ALTER Statement 11-57

5.7 The COMPUTE Statement 11-58
5.8 The DISPLAY Statement 11-59
5.9 The DIVIDE Statement 11-61
5.10 The ENTER Statement 11-63
5.11 The EXIT Statement 11-64
5.12 The GO TO Statement 11-65
5.13 The IF Statement. . . . 11-66
5.14 The INSPECT Statement 11-68
5.15 The MOVE Statement. I 11-74
5.16 The MULTIPLY Statement 11-77
5.17 The PERFORM Statement 11-78
5.18 The STOP Statement 11-85
5.19 The STRING Statement 11-86
5.20 The SUBTRACT Statement 11-89
5.21 The UNSTRING Statement 11-91

SECTION III: TABLE HANDLING MODULE

Chapter 1. Introduction to the Table Handling Module

1.1 Function III-l

1.2 Level Characteristics III-l

Chapter 2. Data Division in the Table Handling Module

2.1 The OCCURS Clause III-2
2.2 The USAGE IS INDEX Clause III-5

Chapter 3. Procedure Division in the Table Handling Module

3.1 Relation Condition III-6

3.2 Overlapping Operands * III-6
3.3 The SEARCH Statement III-7
3.4 The SET Statement III-ll

SECTION IV: SEQUENTIAL I-O MODULE

Chapter 1. Introduction to the Sequential 1-0 Module

1.1 Function IV- 1

1.2 Level Characteristics IV-1

1.3 Language Concepts IV-1

vii

Chapter 2. Environment Division in the Sequential I-O Module

2.1 Input-Output Section IV-4

2.1.1 The FILE-CONTROL Paragraph IV-4
2.1.2 The File Control Entry IV-4
2.1.3 The I-O-CONTROL Paragraph IV-6

Chapter 3. Data Division in the Sequential 1-0 Module

3.1 File Section IV-9

3.2 Record Description Structure IV-9
3.3 The File Description - Complete Entry Skeleton IV-10
3.4 The BLOCK CONTAINS Clause IV- 11
3.5 The CODE-SET Clause IV- 12

3.6 The DATA RECORDS Clause • IV- 13
3.7 The LABEL RECORDS Clause IV- 14
3.8 The LINAGE Clause . I IV-15
3.9 The RECORD CONTAINS Clause IV- 18

3.10 The VALUE OF Clause IV-19

Chapter 4. Procedure Division in the Sequential 1-0 Module

4.1 The CLOSE Statement IV-20

4.2 The OPEN Statement IV-24
4.3 The READ Statement IV-28
4.4 The REWRITE Statement IV-31

4.5 The USE Statement IV-32
4.6 The WRITE Statement IV-34

SECTION V: RELATIVE 1-0 MODULE

Chapter 1. Introduction to the Relative 1-0 Module

1.1 Function V-1
1.2 Level Characteristics V-1

1.3 Language Concepts V-1

Chapter 2. Environment Division in the Relative 1-0 Module

2.1 Input-Output Section V-5
2.1.1 The FILE-CONTROL Paragraph V-5
2.1.2 The File Control Entry V-5
2.1.3 The I-O-CONTROL Paragraph V-7

Chapter 3. Data Division in the Relative 1-0 Module

3.1 File Section V-10

3.2 Record Description Structure V-10

3.3 The File Description - Complete Entry Skeleton V-11
3.4 The BLOCK CONTAINS Clause ■ V-12

3.5 The DATA RECORDS Clause V-13
3.6 The LABEL RECORDS Clause V-14
3.7 The RECORD CONTAINS Clause V-15
3.8 The VALUE OF Clause V-1 6

vill

Chapter 4. Procedure Division in the Relative I-O Module

4.1 The CLOSE Statement. V-17
4.2 The DELETE Statement V-19
4.3 The OPEN Statement V-20
4.4 The READ Statement V-23

4.5 The REWRITE Statement .' V-26
4.6 The START Statement V-28
4.7 The USE Statement V-30
4.8 The WRITE Statement V-32

SECTION VI: INDEXED 1-0 MODULE

Chapter 1. Introduction to the Indexed 1-0 Module

1.1 Function I VI- 1
1.2 Level Characteristics VI- 1

1.3 Language Concepts VI- 1

Chapter 2. Environment Division in the Indexed 1-0 Module

2.1 Input-Output Section VI-5
2.1.1 The FILE-CONTROL Paragraph VI-5
2.1.2 The File Control Entry VI-5
2.1.3 The I-O-CONTROL Paragraph VI-8

Chapter 3. Data Division in the Indexed 1-0 Module

3.1 File Section , VI-11

3.2 Record Description Structure VI-11

3.3 The File Description - Complete Entry Skeleton . VI-12
3.4 The BLOCK CONTAINS Clause. VI- 13
3.5 The DATA RECORDS Clause VI- 14
3.6 The LABEL RECORDS Clause VI-15
3.7 The RECORD CONTAINS Clause . VI- 16

3.8 The VALUE OF Clause VI- 17

Chapter 4. Procedure Division in the Indexed 1-0 Module

4.1 The CLOSE Statement VI- 18
4.2 The DELETE Statement VI- 20
4.3 The OPEN Statement VI-21

4.4 The READ Statement VI-24
4.5 The REWRITE Statement • VI-28
4.6 The START Statement VI-30
4.7 The USE Statement VI-32
4.8 The WRITE Statement VI-33

ix

SECTION VII: SORT-MERGE MODULE

Chapter 1. Introduction to the Sort-Merge Module

1.1 Function VII-1
1.2 Level Characteristics VII-1

1.3 Relationship vrith Sequential I-O Module VII-1

Chapter 2. Environment Division in the Sort-Merge Module

2.1 Input-Output Section VII-2
2.1.1 The FILE-CONTROL Paragraph VII-2
2.1.2 The File Control Entry VII-2 •

2.1.3 The I-O-CONTROL Paragraph VII-3

Chapter 3. Data Division in the* Sort-Merge Module

3.1 File Section VII-5

' 3.2 The Sort-Merge File Description - Complete Entry Skeleton . . VII-5
3.3 The DATA RECORDS Clause VII-6
3.4 The RECORD CONTAINS Clause VII-7

Chapter A. Procedure Division in the Sort-Merge Module

4.1 The MERGE Statement VII-8
4.2 The RELEASE Statement VII-12

4.3 The RETURN Statement VII- 13
4.4 The SORT Statement VII- 14

SECTION VIII: REPORT WRITER MODULE

Chapter 1. Introduction to the Report Writer Module

1.1 Function VIII- 1

1.2 Language Concepts VIII- 1
1.3 Relationship with Sequential 1-0 Module VIII- 1

Chapter 2. Data Division in the Report Writer Module

2.1 File Section VIII-2

2.2 Report Section VIII-2
2.3 The File Description - Complete Entry Skeleton VIII-3
2.4 The Report Description - Complete Entry Skeleton VIII-4
2.5 The Report Group Description - Complete Skeleton VIII-6
2.6 The BLOCK CONTAINS Clause VIII-24
2.7 The CODE Clause VIII-25

2.8 The CODE-SET Clause VIII-26
2.9 The COLUMN NUMBER Clause VIII-27
2.10 The CONTROL Clause VIII-28
2.11 The Data-Name Clause VIII-30

2.12 The GROUP INDICATE Clause VIII-31
2.13 The LABEL RECORDS Clause VIII-32
2.14 The LINE NUMBER Clause VIII-33
2.15 The NEXT GROUP Clause VIII-35

X

2.16 The PAGE Clause VIII-36
2.17 The RECORD CONTAINS Clause VIII-39
2.18 The REPORT Clause VIII-40
2.19 The SOURCE Clause VIII-41
2.20 The SUM Clause VIII-42
2.21 The TYPE Clause VIII-45

2.22 The VALUE OF Clause .' VIII-50

Chapter 3. Procedure Division in the Report Writer Module

3.1 The GENERATE Statement VIII-51
3.2 The INITIATE Statement VIII-53

3.3 The SUPPRESS Statement. .. VIII-54
3.4 The TERMINATE Statement VIII-55

3.5 The USE Statement . . . • VIII-56

SECTION IX: SEGMENTATION MODULE

Chapter 1. Introduction to the Segmentation Module

1.1 Function IX- 1
1.2 Level Characteristics IX- 1

Chapter 2. General Description of Segmentation

2.1 Scope IX-2
2.2 Organization IX-2

2.3 Segment Classification IX-3
2.4 Segmentation Control IX-3

Chapter 3. Structure of Program Segments

3.1 Segment-Numbers IX-4
3.2 SEGMENT-LIMIT Clause IX-5

Chapter 4. Restriction on Program Flow

4. 1 The ALTER Statement IX-6
4.2 The PERFORM Statement IX-6
4.3 The MERGE Statement IX-6

4.4 The SORT Statement IX- 7

SECTION X: LIBRARY MODULE

Chapter 1. Introduction to the Library Module

1.1 Function X-1
1.2 Level Characteristics X-1

Chapter 2. The COPY Statement X-2

xi

SECTION XI: DEBUG MODULE

Chapter 1. Introduction to the Debug Module

1.1 Function XI-1
1.2 Level Characteristics XI-1

1.3 Language Concepts .' XI-1

Chapter 2. Environment Division in the Debug Module

2.1 The WITH DEBUGGING MODE Clause XI-3

Chapter 3. Procedure Division in the Debug Module

3. 1 The USE FOR DEBUGGING Statement • XI-4
3.2 Debugging Lines XI-10

SECTION XII: INTER-PROGRAM COMMUNICATION MODULE

Chapter 1. Introduction to the Inter-Program Communication Module

1.1 Function XII-1
1.2 Level Characteristics XII-1

Chapter 2. Data Division in the Inter-Program Communication Module

2.1 Linkage Section XII-2

Chapter 3. Procedure Division in the Inter-Program Communication Module

3.1 The Procedure Division Header XII-4
3.2 The CALL Statement XII-5 .
3.3 The CANCEL Statement XII-7
3.4 The EXIT PROGRAM Statement XII-8

SECTION XIII: COMMUNICATION MODULE

Chapter 1. Introduction to the Communication Module

1.1 Function XIII-1
1.2 Level Characteristics XIII-1

Chapter 2. Data Division in the Communication Module

2.1 Communication Section XIII-2

2.2 The Communication Description - Complete Entry Skeleton . . . XIII-3

Chapter 3. Procedure Division in the Communication Module

3.1 The ACCEPT MESSAGE COUNT Statement XIII-12
3.2 The DISABLE Statement XIII- 13
3.3 The ENABLE Statement XIII- 15

xii

3.4 The RECEIVE Statement XIII-17
3.5 The SEND Statement XIII-20

SECTION XIV: APPENDIXES

Appendix A. The History of COBOL

1.1 Organization of COBOL Effort XIV-1
1.2 Evolution of COBOL XIV-2
1.3 Standardization of COBOL XIV-6

Appendix B. The Revision of American National Standard COBOL

2.1 The Role of X3J4 • XIV-9

2.2 Interaction with Other COBOL Groups XIV-10
2.3 Differences Between X3. 23-1968 and the Revised Standard. . . . XIV-10

Appendix C. Concepts

3.1 Features of the Language XIV-35
3.2 Record Ordering XIV-35
3.3 Report Writer XIV-35
3.4 Table Handling XIV-36
3.5 File Organization and Access Methods XIV-38
3.6 Rerun XIV- 39

3.7 Program Modularity XIV- 39
3.8 Communication Facility XIV-42
3.9 Debugging XIV-49
3.10 Library XIV-49

SECTION XV: INDEX ' XV-1

xiii

Introduction

1. INTRODUCTION TO THE STANDARD

1.1 SCOPE AND PURPOSE

The scope of this standard is to specify both the form and interpretation

of programs expressed in COBOL. Its purpose is to promote a high degree of
machine independence in such program.s in order to permit their use on a

variety of automatic data processing systems.

1.2 STRUCTURE OF LANGUAGE SPECIFICATIONS

The organization of COBOL specifications in this standard is based on a
functional processing module concept. The standard defines a Nucleus and

eleven functional processing modules: Table Handling, Sequential I-O , Relative
I-O, Indexed I-O, Sort-Merge, Report Writer ,. Segmentation , Library, Debug,
Inter-Program Communication, and Communication. Each module contains either

two or three levels. In all cases, the lower levels are proper subsets 'of the
higher levels within the same module. Nine modules contain a null set as their
lowest level.

This organization provides the flexibility necessary to tailor specifications
in such a way that they will satisfy the requirements of a large variety of
data processing applications. At the same time, inherent in this organization
is the ability to determine, with a greater degree of certainty than previously
possible, the elements of the standard that are included in a given compiler.

The follov7ing is a characterization of the contents of the component levels
of each module.

The Nucleus contains lanugage elements that are necessary for internal

processing. This module is divided into two levels. The low level supplies

elements necessary to perform basic internal operations, i.e., the more ele-
mentary options of the various clauses and verbs. The high level of the

Nucleus provides more extensive and sophisticated internal processing
capabilities .

The Table Handling module contains the language elements necessary for:
(1) the definition of tables, (2) the identification, manipulation and use of
indices, and (3) reference to the items within tables. This module is
divided into two levels. The low level provides the ability to define fixed

length tables of up to three dimensions, and to refer to items within them

using either a subscript or an index. The high level provides for the defini-
tion of variable length tables. In addition, facilities for serial and

nonserial lookup are provided by the SEARCH verb and its attendant Data
Division clauses.

The Sequential I-O module contains the language elements necessary for the
definition and access of sequentially organized external files. The module is
divided into two levels. The low level contains the basic facilities for the

definition and access of sequential files and for the specification of check-
points. The high level contains more com.plete facilities for defining and

accessing these files.

Tlie Relative I-O iiiodul.e provides the cniiabi].iCy of defining and accessing

mass stora;:;e files Jn v.'hich rcrords are idv'uLJi'iod by relative record numbers.

1-1

Introduction

lliis module contains a null set as its lowest level, and two processing levels.
The]ow processing level provides basic facilities. The high level provides
more complete facilities, including the capability of accessing the file both
randomly and sequentially in the same COBOL program.

The Indexed I-O module provides the capability of defining mass storage
files in which records are identified by the value of a key and accessed
through an index. Tliis module contains a null set as its lowest level, and

two processing levels. The low processing level provides basic facilities.
The high level provides more complete facilities, including alternate keys, and
and the capability of accessing the file both randomly and sequentially in
the same COBOL program.

The Sort-Merge module allows for the inclusion of one or more sorts in a
COBOL program, and consists of a null set and tx'jo processing levels. Tlie low
processing level contains facilities sufficient to implement basic sorting,
while the high level provides extended sorting capabilities, including a merge
facility.

The Report Writer module provides for the semi-automatic production of
printed reports. This module consists of a null set and one processing level.

The Segmentation module provides for the overlaying at object time of
Procedure Division sections. This module consists of a null set and t\^7o

processing levels. The low processing level provides for section segment-
numbers and fixed segment limits. The high level adds the capability for
varying the segment limit.

The Library module consists of a null set and two processing levels. It
provides for the inclusion into a program of predefined COBOL text. Ihe low
processing level contains the basic COPY verb, to which the high level adds
the REPLACING phrase.

The Debug module provides a means by which the user can specify his

debugging algorithm — the conditions under which data or procedure items are
monitored during execution of the program. It consists of a null set and two

processing levels. The low processing level provides a basic debugging

capability, including the ability to specify selective or full paragraph
monitoring. The high level provides the full COBOL debugging capability.

Tlie Inter-Program Communication module provides a facility by which a
program can communicate with one or more other programs. This module consists
of a null set and t\i70 processing levels. The low processing level provides
a capability to transfer control to another program known at compile time,
and the ability for both programs to have access to certain common data items.
Tlie high level adds the ability to transfer control to a program not identified
at compile time as well as the ability to determine the availability of

object time memory for the called program. The high level also proviaes the
capability for the release of memory areas occupied by called programs.

The Communication module provides the ability to access, process and create
messages or portions thereof, and to communicate through a Message Control
System with local and remote communication devices. This module consists

of a null set and two processing levels. The lov; processing level provides

1-2

Introduotion

basic facilities to send or receive complete messages. Tlie high level provides
a more sophisticated facility including the capability to send or receive
segments of a message.

1.3 ORGANIZATION OF DOCUMENT

This document is divided into fifteen sections. The first section is com-
posed of the introduction, a list of elements by module, a list of elements

showing their disposition among the various modules, definitions, a discussion

of overall language considerations, and a composite language skeleton. Sections
II through XIII contain specifications for the Nucleus and for each of the

functional processing modules. These sections comprise the detailed specifi-
cations of American National Standard COBOL. Section XIV contains the

appendices to the document and Section XV contains the index.

The previous version of this standard contained a chapter for each level
of the Nucleus and of the functional processing modules. This revision, in

order to show more clearly the relationship of levels within a module, contains
one section for each module. In each section, specifications unique to the
high level are enclosed in boxes.

1.4 HOW TO USE THE STANDARD

It is envisioned that the standard will be examined from several different

viewpoints. In addition to the table of contents and the index, the list of
elements by module and the list of elements showing disposition are also
intended to serve as a key to the standard. To determine the contents of any

level, the list of elements by module beginning on page I- 10 should be used.
This list contains a detailed breakdown of each element of American National

Standard COBOL and is organized by level. In addition, page and paragraph
numbers indicate where within the standard the specification for each element

is to be found. For example, to ascertain the contents of the low level of

Sequential I-O , reference is made to that module within the list of elements

by module (see page 1-21). There v;ill be found a list of all COBOL elements
including overall language considerations, Environment Division and Data Divi-

sion entries and Procedure Division verbs that pertain to Sequential I-O.
Because levels are nested, in order to determine the contents of the highest

level, the entire module must be examined. To obtain more detailed informa-
tion concerning a specific element, the page and paragraph numbers that

accompany each element in the list may be used as a key to the technical
specification section of the standard.

To determine" in whicli level or levels a specific language feature appears,

the list of elements showing disposition is used. (See phages I-AO through
1-51.) This list shows in detail all elements of American National Standard
COBOL and their occurrences within the various levels. In addition, for each

appearance of an element, the appropriate page numbers are shown. Those
elements which are not completely contained v/ithin one level are shov;n in

sufficient detail to specify the location of each subelerj,,.nt . If more detail-
ed information is desired concerning the use of a specific element in any level,

the page nunibcrs adjacent to each clement in the list may be used as a guide

to the technical specification section of the standard. I'or example, to locate
where the READ statement appears within the standard, the list of elements
showing disposition is used. It v/i .11 be seen that the READ statement appears

in low level of Sequential I-O, Relative I-O, and Indexed 1-0. Because certain

1-3

Introduction

phrases of the READ statement appear only

its subelemcnts are listed separately. A
ance of a sub element.

in the high levels of these modules,

page number appears for each appear-

Wlien the list of elements by module is used to determine the contents of a
level and subsequently it is desired to ascertain where else in the standard
a particular element is used, reference would be made to the list of elements

showing disposition, and from there, to the detailed technical specifications,
if necessary.

For general information regarding overall language considerations or con-
cepts, the table of contents or index may he used as a key to the standard.

Finally, to determine the content of an implementation of American National

Standard COBOL, the schematic diagram on page 1-5 should be used. The schemat-
ic diagram is a graphic representation of the division of COBOL into the.

various functional processing modules and the Nucleus. Further, the schematic
shows the hierarchy of levels within each functional processing module and
within the Nucleus .

1.5 DEFINITION OF AN IMPLEMENTATION OF AMERICAN NATIONAL STANDARD COBOL

In terms of the schematic diagram on page 1-5, an implementation of American
National Standard COBOL can be represented by a combination of boxes, consist-

ing of one box from each of the twelve vertical columns. As illustrations, and
for convenience of discourse, the following definitions are provided:

(1) Tlie full American National Standard COBOL is composed of the highest
level of the Nucleus and of each of the functional processing modules .

(2) A subset of American National Standard COBOL is any combination of
levels of the Nucleus and of each of the functional processing modules other
than the full American National Standard COBOL.

(3) The minimum American National Standard COBOL is composed of the lowest

level of the Nucleus and of each of the functional processing modules. (Because
of the presence of null sets, the minimum, standard consists of the low levels

of the Nucleus, Table Handling and Sequential I-O.)

An implementation is defined to meet the requirements of the American

National Standard COBOL specification if that implementation includes a fully
implemented specified level of each of the functional processing modules and
of the nucleus as defined in this standard. It follows from this that, in

order to meet the requirements of this standard, an implementation must:

(1) Not require the inclusion of substitute or additional language elements
in the source program, in order to accomplish any part of the function of any
of the standard language elements.

(2) Accept all standard language elements contained in a given level of a
module which in specified as being included in the J.mplementation, except as

specifically exempted by pai'agraph 1.7 on page 1-8.

1-4

Introduction

1 OJ CM
M m

O <

CO
M

CO
M

null

fst

<-(

■P
RO
GP
JV
M

I
IC
AT
IO
N

CM
o

CM

o

«-i

IN
TE
R-

1 2

IP
C

1

IP
C

•3

0

DE
BU
G

2

DE
B
 0,
2

1

DE
B
 0,
2

null

LI
BR
AR
Y

2

LI
B
 0,
2

1

LI
B
 0,
2

null

!I
NG

MO
DU
LE
S

SE
GM
EN
-

TA
TI
ON

2

SE
G
 0,
2

1

SE
G
 0,
2

null

i

<A
L

PR
OC
ES
S

RE
PO
RT

WR
IT
ER

1

RP
W
 0,
1

CM

CM

SO
RT
-

ME
RG
E

SR
T

0,

SR
T

0,

null

cm'

Q CM
o o

g
 M

2

IN
X

•H

nul

<M

(N

M
H O

o O 1-4
t— (

d

CM

CM

sequent:

I-
O

2

SE
Q

1

1

SE
Q

1,

TA
BL
E

HA
ND
LI
NG

2

TB
L
 1,
2

■-I

_)

03

t-l

»-«

Cvl

NU
CL
EU
S

NU
C

1,
 CM

1-5

Intr-oduation

These points ai'e of particular pertinence in two a't-eas :

(1) Tliere are throughout the Ariieric^in National Standard COBOL specification

certain languiige elements wliose syntax or effect is specified to be, in part, »

imp] ementor-def jned . (See paragraph].6 on page 1-7 for a List of these elements.)
VJliile the impleiiien tor specifies the constraints on that portion of each, element's
syntax or rules that is indicated in this standard to be ivnplementor-def ined ,
such constraints may not include any requirement for the j.nclusion in the source
program of substitute or additional language elen^ents.

(2) When a function is provided outside the source program that accomplishes

a function specified by any particular standard COBOL ele;nent, then the imple-
mentation must not require, except for Environment Division elements, the

specification of that external function in place of or in addition to that
standard language element.

The following qualifications apply to the American National Standard COBOL
specification:

(1) Tliere are certain language elements which pertain to specific types of

hardware components (see paragraph 1.7 on page 1-8 for a list of these elements).
In order for an implementation to meet the requirements of this standard, the
implementor must specify the minimum hardware conf i guraticra required for that

implementation and the hardware components that it supports • Further, when

support is thus claimed for a specific hardv/are component, all standard lan-
guage elements that pertain to that component must be implemented if the module

in which they appear is included in the implementation. Language elements that
pertain to specific hardware components for which support is not claimed, need

not be implemented. However, the absence of such elem.ents from an implementa-
tion of American National Standard COBOL must be specified.

(2) An implementation of American National Standard COBOL may include the
ENTER statement or not, at the option of the implementor.

(3) An implementation that includes, in addition to a specified level of

each of the functional processing modules and of the Nucleus, elements or
functions that either are not defined in the American National Standard COBOL

specification or are defined in a given level of a standard module not other-
wise included in the implementation, meets the requirements of this standard.

This is true even though it may imply the extension of the list of reserved
words by the implementor, and prevent proper compilation ..if some programs that

meet the requirements of this standard. The implemeiitor -'ust specify any
optional language (language not defined in a specified Iccl but defined else-

where in the standard) or extensions (language elements or functions not defined
in this standard) that are included in the implementation,,

(4) In general, the American National Standard COBOL .-.i-i.-ecif ication specifies
no upper limit on sucVi things as the number of statements in a program, the
nuii)ber of operands permitted in certain statements, etc. It is recognized

that these limits will vary from one implementation of A:, .•.•jean National Stan-
dard COBOL to another and may prevent the proper compilatjon of some progranLS

that meet the requirements of this standard.

1-6

Introduction

(5) For a discussion of character substitution which likewise may prevent
the proper compilation of some programs that meet the requirements of this

standard, see page 1-75, paragraph 5.3.1, Character Set.

1.6 IMPLEMENTOR-DEFINED LANGUAGE SPECIFICATIONS

The language elements in the following lists depend on implementor defini-
tions to complete the specification of the syntax or rules for the elements.

The elements whose syntax is partly implementor-def ined are:

Element »

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph

MEMORY SIZE clause

alphabet-name

SPECIAL-NAMES paragraph

ASSIGN clause

VALUE OF clause

RERUN clause

CALL and CANCEL statements

COPY statement

ENTER statement

Margin R

Area B

Qualification

Implementor-Def ined Aspect

computer-nape

computer-name
integer

implementor-name ; whether implementor-names
are provided.

implementor-name

implementor-name

implementor-name; whether implementor-names
are provided.

implementor-name and the form; the
implementor provides at least one
of seven specified forms.

relationship between operand and the
referenced program.

relationship between library-name,
text-name, and the library.

language-name
The location.

The number of character positions.

The number of qualifiers; at least five
levels must be supported.

The elements whose effect is partly implementor-def ined are:

Element

alphabet-name

implementor-name switches

USAGE IS COMPUTATIONAL
clause

Implementor-Def ined Aspect

The correspondence between native and
foreign character sets.

Whether setting can change during
execution.

Representation and whether automatic

alignment occurs.

1-7

Introduction

Element Implementor-Def ined Aspect

USAGE IS INDEX clause

SYNCHRONIZED clause

ACCEPT statement

DISPLAY statement

Numeric test

Comparison of nonnumeric.
items

Arithmetic expressions

Representation and whether automatic

alignment occurs. *

Whether implicit FILLER positions are
generated; their effect on the size of

group items and redefining items.

Maximum size of one transfer of data in
Level 1 Nucleus .

Maximum size of one transfer of data in
Level 1 Nucleus .

Representation of valid sign in the
absence of the SIGN IS SEPARATE clause.

Collating sequence, where NATIVE or imple-
mentor-name collating sequence is
implicitly or explicitly specified.

Number of places carried for intermediate
results .

1.7 ELEMENTS THAT PERTAIN TO SPECIFIC HARDWARE COMPONENTS

The standard language elements in the list that follows pertain to specific
types of hardware components. These language elements must be implemented in
an implementation of American National Standard COBOL when support is claimed,
by the iraplementor, for the specific types of hardware components to which

they pertain, and the module in which they are defined is included in that
implementation.

Element

CODE-SET clause

MULTIPLE FILE TAPE clause

CLOSE. . .REEL /UNIT statement

CLOSE... NO REWIND statement

OPEN. . .REVERSED statement

OPEN... NO REWIND statement

OPEN. . . I-O statement

(Sequential 1-0 only)

OPEN EXTEND statement

REWRITE statement

(Sequential 1-0 only)

SEND. . .BEFORE/AFTER
ADVANCING statement

Hardware Component

Device capable of supporting the specified
code.

Reel

Reel or mass storage

Reel or mass storage

Reel with the capability of making records
available in the reversed order; mass

storage with the capability of making
records available in the reversed order.

Reel or mass storage

Mass storage

Reel or mass storage

Mass storage

Devices capable of vertical positioning;
devices capable of action based on

mnemonic-names .

1-8

Introduction

Element Hardware Component

USE . . . I-O (Sequential
I-O only)

WRITE. . .BEFORE/ AFTER
ADVANCING

Mass storage

Devices capable of vertical positioning;
devices capable of action based on

mnemonic-name .

1.8 SHORTHAND NOTATION

Within the schematic diagram on page 1-5, the list of elements by module on
pages I-IO through 1-39, and the list of elements showing disposition on pages
1-40 through 1-51, a shorthand notation has been adopted to indicate the hier-

archical position of any level within the Nucleus or a functional processing
module as well as the number of levels into which a module has been divided.

This code is composed of, from left to right, a one-digit number indicating

the level's position in the hierarchy, a three-character mnemonic name, and
a two-digit number indicating the minimum and maximum levels of the module
to which the level belongs. A level number of zero indicates a null level.
For example, 2 NUC 1,2 indicates that this level is the second level of the
Nucleus and that the Nucleus is composed of two levels, neither one of which

is a null set. As a further example, 2 SRT 0,2 indicates that th'is level is
the second non-null level of the Sort-Merge module which contains three
levels, the lowest of which is a null level.

The mnemonic names that are used in these codes are the following:

Mnemonic Name Meaning

NUC
TBL
SEQ

REL

INX

SRT
RPW

SEC
LIB
DEB
IPC

COM

Nucleus

Table Handling

Sequential I-O
Relative I-O

Indexed I-O
Sort-Merge

Report Writer

Segmentation Library Debug

Inter-Program Communication
Communication

1-9

List of Elements by Module

2. LIST OF ELEMENTS BY MODULE

2.1 GENERAL DESCRIPTION

This chapter contains a list of all elements in the American National
Standard COBOL organized by the level in which each element is located.
Adjacent to each element is a text reference. This reference indicates the

page number and the paragraph number of the detailed specification describing
the particular element.

I- 10

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts 1-75 5.3
Characters used for words 1-76 5.3.2.2.1

0, 1, 9
A, B, . . . , Z

- (hyphen or minus)
Characters used for punctuation 1-65 4.2

" quotation mark
(left parenthesis

) right parenthesis

period
space ':«.

= equal sign

Characters used in editing 1-58 4.2
B space
0 zero

+ plus
- minus
CR credit
DB debit

Z zero suppress

* check protect
$ currency sign

, comma

period
/ stroke

Separators 1-75 5.3.2.1
The separators, semicolon and comma, are not

allowed II-l 1.3. 1

Character-strings 1-76 5.3.2.2
COBOL words 1-76 5.3.2.2.1

Not more than 30 characters

User-defined words 1-76 5.3.2.2.1.1
data-name

Must begin with an alphabetic character . II-l 1.3.2
Must be unique; may not be qualified. . . II-l 1.3.2

level-number

mnemonic-name

paragraph-name
program-name
routine-name
section-name

System-names 1-78 5.3.2.2.1.2
computer-name
implementor-name
language-name

Reserved words 1-79 5.3.2.2. 1.3
Key words
Optional words

I-ll

List of Elements by Module

i

NUCLEUS, LEVEL 1 (1 NUC 1,2)

j PAGE PARAGRAPH
ELEMENTS | NUMBER NUMBER

Reserved words (continued)

Figurative constants 1-80 5.3.2.2.1.3.5
ZERO

SPACE

HIGH-VALUE
LOW-VALUE

QUOTE
Special-c^iaracter words 1-80 5.3.2.2.1.3.6

Literals 1-80 5.3.2.2.2
Nonnumeric literals have lengths from 1

through 120 characters
Numeric literals have lengths from 1 through

18 digits I

PICTURE character-strings 1-82 5.3.2.2.3
Comment-entries 1-82 5.3.2.2.4

Reference format . , 1-105 5.8

Sequence number 1-106 ̂ 5.8.2.1

Area A 1-105 * 5.8.2
Division header 1-106 5.8.3.1
Section header 1-106 5.8.3.2

Paragraph header 1-107 5.8.3.3
Data Division entries 1-107 5.8.4

Area B 1-105 5.8.2

Paragraphs 1-107 5.8.3.3
Data Division entries 1-107 5.8.4

Continuation of lines 1-106 5.8.2.2

Only nonnumeric literals may be continued II-l 1.3.4
Comment lines 1-108 5.8.6

Asterisk (*) comment line
Stroke (/) comment line

Identification Division 1-94 5.4

The PROGRAM- ID paragraph II-3 2.3
The AUTHOR paragraph II-2 2.2.1.1
The INSTALLATION paragraph II-2 2.2.1.1
The DATE-WRITTEN paragraph II-2 2.2.1.1
The SECURITY paragraph II-2 2.2.1.1

Environment Division 1-95 5.5

The SOURCE-COMPUTER paragraph II-5 3.1.1
computer-name

The OBJECT-COMPUTER paragraph II-6 3.1.2
computer-name
MEMORY SIZE clause

PROGRAM COLLATING SEQUENCE clause

The SPECIAL-NAMES paragraph II-8 3.1.3
implementor-name IS mnemonic-name
implementor-name IS mnemonic-name series
ON STATUS
OFF STATUS

1-12

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS ' NUl-IBER NUMBER

The SPECIAL-NAMES paragraph (continued)
alphabet-name clause
CURRENCY SIGN clause

DECIMAL-POINT clause

Data Division 1-97 5.6

Working-Storage Section 11-11 4.1
The data description entry. 11-12 4.2
The BLANK WHEN ZERO clause 11-14 4.3
The data-name or FILLER clause 11-15 4.4

The JUSTIFIED clause (may be abbreviated JUST). 11-16 4.5
Level-number 11-17 4.6

01 through 10 (level numbers must be 2 digits) . . . 11-13 4.2.3
77 11-11 4.1.1

The PICTURE clause (may be abbreviated PIC) 11-18 4.7
Character-string may contain 30 characters 11-18 4.7.3
Data characters: AX9 11-18 4.7.4

Operational symbols: S V P 11-21 4.7.5

Fixed insertion characters 11-21 ' 4.7.5
0 (may be used only in edited items)
y

B (may be used only in edited items)
•

$ (currency sign)

+ and - (right or left)
DB and CR

/

Replacement or floating characters 11-21 4.7.5
$ (currency sign)

+ and -
Z
*

Currency sign substitution 11-21 4.7.5

Decimal point substitution 11-21 4.7.5
The REDEFINES clause (may not be nested) 11-27 4.8
The SIGN clause 11-31 4.10

The SYNCHRONIZED clause (may be abbreviated SYNC) . . . 11-33 4.11
The USAGE clause 11-35 4.12

COMPUTATIONAL (may be abbreviated COMP)
DISPLAY

The VALUE clause 11-36 4. 13
literal

Procedure Division 1-99 5.7

Conditional expressions • • 11-41 5.2

Simple condition 11-41 5.2.1
Relation condition 11-41 5.2.1.1

Relational operators

[NOT] GREATER THAN

[NOT] LESS THAN

[NOT] EQUAL TO

1-13

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Relation condition (continued)

Comparison of numeric operands 11-42 5.2.1.1.1
Comparison of nonnumeric operands (operands

must be of equal size) 11-42 5.2.1.1.2
Class condition 11-43 5.2. 1.2

NOT option

Switch-status condition 11-44 5.2.1.4
The arithmetic statements 11-51 5.3.4

Arithmetic operands limited to 18 digits

Overlapping operands 11-51 5.3.5
The ACCEPT statement (only one transfer of data) . . . 11-53 5.4
The ADD statement 11-55 5.5

identifier/literal series
TO identifier

GIVING identifier

ROUNDED phrase
SIZE ERROR phrase

The ALTER statement (only one procedure-name) 11-57 • 5.6
The DISPLAY statement (only one transfer of data). . . 11-59 5.8
The DIVIDE statement 11-61 5.9

INTO identifier

BY identifier/literal
. GIVING identifier

ROUNDED phrase
SIZE ERROR phrase

The ENTER statement 11-63 5. 10
The EXIT statement 11-64 5.11

The GO TO statement (procedure-name is required) . . . 11-65 5.12
DEPENDING ON phrase

The IF statement (statements must be imperative) . . . 11-66 5.13
ELSE phrase

The INSPECT statement (only single character data

item) 11-68 5.14
TALLYING phrase

ALL
LEADING

CHARACTERS

REPLACING phrase
ALL
LEADING
FIRST

CHARACTERS

TALLYING and REPLACING phrases

The MOVE statement 11-74 5.15
TO identifier
identifier series

The MULTIPLY statement 11-77 5.16
BY identifier
GIVING identifier

ROUNDED phrase
SIZE ERROR phrase

1-14

List of Elements by Module

NUCLEUS, LEVEL 1 (1 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

The PERFORM statement 11-78 5.17

procedure-name
THRU phrase
TIMES phrase

The STOP statement 11-85 5.18
literal
RUN

The SUBTRACT state^nent 11-89 5.20
identifier/literal series
FROM identifier

GIVING identifier

ROUNDED phrase
SIZE ERROR phrase

1-15

List of Elements by Module

NUCLEUS, LEVEL 2 (2 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

All elements of 1 NUC 1,2 are a part of 2 NUC 1,2

Language Concepts '. . . 1-75 5.3
Characters used for punctuation 1-65 A. 2

, comma
; semicolon

Characters used for arithmetic operations 1-52 4.2
+ addition

- subtraction

* multiplication
/ division v

** exponentiation
Characters used in relations 1-66 4.2

= equal to
> greater than
< less than

Separators 1-75 5.3.2.1
The separators, semicolon and comma, are allowed . . II-l , 1.3.1

Character-strings 1-76 5.3.2.2
COBOL words 1-76 5.3.2.2.1

User-defined words 1-76 5.3.2.2.1.1
condition-name
data-name

Need not begin with an alphabetic

character II- 1 1.3.2
May be qualified if necessary for

uniqueness II-l 1.3.2
Reserved words 1-79 5.3.2.2. 1.3

Figurative constants 1-80 5.3.2.2.1.3.5
ZEROS; ZEROES
SPACES

HIGH- VALUES'
LOW-VALUES

QUOTES
ALL literal

Connectives 1-79 5.3.2.2. 1.3.3
Qualifier connectives: OF, IN
Series connectives: , (separator comma)

and ; (separator semicolon)
Logical connectives: AND, OR, AND NOT,

OR NOT

Qualification 1-87 5.3.3.8.1

Reference format 1-105 5.8
Continuation of lines (continuation of words and

numeric literals is allowed) II-l 1.3.4

Identification Division 1-94 5.4

The DATE-COMPILED paragraph II-4 2.4

1-16

List of Elements by LjocIu'Ic

NUCLEUS, LEVEL 2 (2 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NTOTBER

Environment Division

The SPECIAL-NAMES paragraph II-8 3.1.3
alphabet-name clause

literal

Data Division 1-97 5.6

The data description entry 11-12 4.2
Level-number 11-17 4.6

01 through 49 (level-numbers may be 1 or 2 digits)
66
88

The REDEFINES clause (may be nested) 11-27 4.8
The RENAl'IES clause (may be nested) 11-29 4.9

data-name
data-name THRU data-name

The VALUE clause 11-36 4.13

literal-1, literal-2, ...
literal-1 THRU literal-2
literal range series

Procedure Division 1-99 5.7

Arithmetic expressions 11-39 5.1
Conditional expressions 11-41 5.2

Simple condition 11-41 5.2.1
Relational condition 11-41 5.2.1.1

Relational operators

[NOT] =
[NOT] >
[NOT] <

Comparison of nonnumeric operands (operands

of unequal size are allowed) 11-42 5.2.1.1.2
Condition-name condition 11-44 5.2.1.3

Sign condition 11-44 5.2.1.5
NOT option

Complex condition 11-45 5.2.2
Logical operators AND, OR, and NOT

Negated simple condition 11-45 5.2.2.1
Combined and negated combined conditions 11-46 5.2.2.2

Abbreviated combined relation condition 11-47 5.2.3

Multiple results in arithmetic statements 11-51 5.3.6
The ACCEPT statement (no restrictions on the number

of transfers of data) 11-53 5.4
FROM phrase

The ADD statement 11-55 5.5
TO identifier series
GIVING identifier series

CORRi;SPONDING phrase

The ALTER statement 11-57 5.6
The scries option is allowed

1-37

Lict of Elements hu Module

NUCLEUS, LEVEL 2 (2 NUC 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

The COMPUTE statement 11-58 5.7
identifier series v

ROUNDED phrase
SIZE ERROR phrase

The DISPLAY statement (no restrictions on the number

of transfers of data) 11-59 5.8
UPON phrase

The DIVIDE statement 11-61 5.9
INTO identifier series
GIVING identifier series

REMAINDER phrase

The GO TO statement (procedure-name may be omitted). . 11-65 5.12
The IF statement (nested statements) 11-66 5.13
The INSPECT statement (multi-character data items) . . 11-68 5.14

series

The MOVE statement 11-74 5.15
CORRESPONDING phrase

The MULTIPLY statement 11-77 . 5.16
BY identifier series
GIVING identifier series

The PERFORM statement 11-78 5.17
UNTIL phrase
VARYING phrase

The STRING statement 11-86 5.19
DELIMITED series

POINTER phrase
ON OVERFLOW phrase

The SUBTRACT statement 11-89 5.20
FROM identifier series
GIVING identifier series

CORRESPONDING phrase

The UNSTRING statement 11-91 5.21
DELIMITED BY phrase
POINTER phrase

TALLYING phrase
ON OVERFLOW phrase

1-18

List of Elements by Module

TABLE HANDLING, LEVEL 1 (1 TBL 1,2)

ELEMENTS

PAGE

NUMBER

PARAGRAPH
NWIBER

Language Concepts
User-defined v;ords 1-76

index-name

Subscripting - 3 levels 1-89
Indexing - 3 !l.evels 1-89

Data Division

Tlie OCCURS clause.. III-2
integer TIMES
INDEXED BY index-name series

The USAGE IS INDEX clause. • III-5

Procedure Division

Relation conditions III-6

Comparisons involving index-names and/or
index data items

Overlapping operands III-6
The SET statement III-ll,

index-name/ identifier series
index-name
UP BY identifier /integer

DOWN BY identifier/integer
index-name series

5.3.2.2.1.1

5.3.3.8.2
5.3.3.8.3

2.1

2.2

3. 1

3.2 3. A

1-19

List of Elements by Module

TABLE HANDLING, LEVEL 2 (2 TBL 1,2)

ELEMENTS

PAGE

NUMBER
PARAGRAPH

NU>IBER

All elements of 1 TBL 1,2 are a part of 2 TBL 1,2

Data Division
The OCCURS clause

III-2

2.1

integer-1 TO integer-2 DEPENDING ON data-name
ASCENDING/DESCENDING data-name

data-name series
ASCENDING/DESCENDING series

Procedure Division

The SEARCH statement . , III-7 3.3
VARYING phrase
AT END phrase
WHEN phrase

The SEARCH ALL statement III-7 3.3
AT END phrase
WHEN phrase

1-20

List of Elements by Module

SEQUENTIAL I-O, LEVEL 1 (1 SEQ 1,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts
User-defined words 1-76 5.3.2.2.1

file-name
record-narae

1-0 status IV-1 1.3.4

Environment Division

The FILE-CONTROL paragraph IV-4 2.1.1
The file control entry IV-4 2.1.2

SELECT clause

ASSIGN TO irapleinentor-naTne clause
ORGANIZATION IS SEQUENTIAL clause
ACCESS MODE IS SEQUENT I/\L clause
FILE STATUS clause

The I-O-CONTROL paragraph IV-6 2.1.3
RERUN clause
SAME AREA clause
SAME AREA series

Data Division

File Section IV-9 3.1

The file description entry IV-10 3.3
The record description entry IV-9 3.2
The BLOCK CONTAINS clause IV- 11 3.4

integer CHARACTERS
integer RECORDS

The CODE-SET clause IV- 12 3.5
The DATA RECORDS clause IV- 13 3.6

data-name
data-name series

The LABEL RECORDS clause IV-14 3.7
STANDARD
OMITTED

The RECORD CONTAINS clause IV- 18 3.9

integer- 1 TO integer-2 CHARACTERS
The VALUE OF clause IV-19 3.10

implementor-name IS literal
implementor-name IS literal series

Procedure Division

The CLOSE statement (only a single file-name may
appear in a CLOSE statement) IV-20 4.1

REEL
UNIT

The OPEN statement (only a single file-name may
appear in an OPEN statement) IV-24 4,2

INPUT
OUTPUT

1-0

1-21

List of Elements by Module

SEQUENTIAL I -0, LEVEL 1 (1 SEQ 1,2)

ELEMENTS
PAGE
NUMBER

PARAGRAPH
NUMBER

The READ statement
INTO identifier

AT END phrase

IV-28 4.3

The REWRITE statement IV- 31 4.4
FROM identifier

The USE statement IV- 3 2 4.5

EXCEPTION/ ERROR PROCEDURE

ON file-name,
ON INPUT
ON OUTPUT

ON I-O ^
The WRITE statement IV-34 4.6

FROM identifier

BEFORE/AFTER integer LINES
BEFORE/AFTER PAGE

1-22

List of Elements by Module

SEQUENTIAL I-O, LEVEL 2 (2 SEQ 1,2)

ELEMENTS
PAGE PARAGRAPH
NUMBER NUMBER

Procedure Division

The CLOSE statement

NO REWIND, REMOVAL, or LOCK
file-name series

The OPEN statement
INPUT

REVERSED
NO REWIND

OUTPUr
NO REWIND

EXTEND

file-name series

INPUT, OUTPUT', I-O, and EXTEND series
The USE statement

EXCEPTION/ ERROR PROCEDURE ON file-name series
EXCEPTION/ ERROR PROCEDURE ON EXTEND

The \vTlITE statement
BEFORE/AFTER identifier LINES

B E F 0 RE / A F '].' FR mn emo n i c - n am e
AT ENT)-0F-PAGE imperative-statement

5.3.2.2.1.3.4
1.3.6

2. 1. i

2.1.2

2.1.3

All elements of 1 SEQ 1,2 are a part of 2 SEQ 1,2

Language Concepts

Special register 1-80
LINAGE-COUNTER IV-3

Environment Division

The FILE-CONTROL paragraph IV-4
The file control entry IV-4

SELECT clause

OPTIONAL phrase
RESERVE integer AREA(S) clause

The 1-0-CONTROL paragraph IV-6
SAME RECORD AREA clause
SAME RECORD AREA series
MULTIPLE FILE TAPE clause

Data Division

The file description entry IV-10
The BLOCK CONTAINS clause IV- 11

integer- 1 TO integer-2 RECORDS
integer- 1 TO integer-2 CHARACTERS

The LINAGE clause IV- 15
FOOTING phrase
TOP phrase
BOTTOM phrase

The VALUE OF clause . IV- 19
implementor-name IS data-name
implementor-name IS data-name series

3.3

3.4

3.8

3. 10

IV-20 4.1

IV-24 4.2

IV-32 4.5

IV-34 4.6

1-23

List of Elements by Module

RELATIVE I-O, LEVEL 1 (1 REL 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts

User-defined words 1-76 5.3.2.2.1.1
file-name

record-name

1-0 status V-2 1.3.4

Environment Division

The FILE-CONTROL paragraph V-5 2,1.1
The file control entry V-5 2.1.2

SELECT clause

ASSIGN TO implementor-name clause
ORGANIZATION IS RELATIVE clause
ACCESS MODE clause

SEQUENTIAL
RANDOM

FILE STATUS clause ■

The I-O-CONTROL paragraph V-7 2.1.3
RERUN clause
SAME AREA clause
SAME AREA series

Data Division

File Section V-10 3.1

The file description entry. V-11 3.3
The record description entry V-10 3.2
The BLOCK CONTAINS clause V-12 3.4

integer CHARACTERS
integer RECORDS

The DATA RECORDS clause V-13 3.5
data-name
data-name series

The LABEL RECORDS clause V-14 3.6
STANDARD
OMITTED

The RECORD CONTAINS clause V-15 3.7

integer- 1 TO integer-2 CHARACTERS
The VALUE OF clause V-16 3.8

implementor-name IS literal
implementor-name IS literal series

Procedure Division

The CLOSE statement V-17 4.1
WITH LOCK

file-name series

The DELETE statement. . V-19 4.2
INVALID KEY phrase

The OPEN statement. . V-20 4.3
INPUT
OUTPUT

1-0

1-24

List of Elements by Module

RELATIVE I-O, LEVEL 1 (1 REL 0,2)

ELEMENTS

PAGE
NU>IBER

PARAGRAPH
NUMBER

The OPEN statement (continued)

file-name series

INPUT, OUTPUT, and 1-0 series
The READ statement. .

INTO identifier

AT END phrase
INVALID KEY phrase

V-23

4. A

The RH7RITE statement

FROM identifier

INV/JLID KEY phrase

V-26

4.5

The USE statement

V-30
4.7

EXCEPT ION /EPvROR PROCEDURE

ON file-name
ON INPUT
ON OUTPUT

ON 1-0
The V7RITE statement v-32 ^

FROM identifier

INVALID KEY phrase

1-25

I

Lrist of Elements by Module

RELATIVE I-O, LEVEL 2 (2 REL 0,2)
PAGE PARAGRAPH

ELEMENTS NWffiER NUMBER

All elements of 1 REL 0,2 are a part of 2 REL 0,2

Enviroximent Division

The FILE-CONTROL paragrapK V-5 2.1.1
The file control entry V-5 2.1.2

SELECT clause

RESERVE integer AREA(S) clause
ACCESS MODE IS DYNAMIC clause

The I-O-CONTROL paragraph . V-7 2.1.3
SAME RECORD AREA
SAME RECORD AREA series

Data Division

The file description entry V-11 3.3
The BLOCK CONTAINS clause . , V-12 3.4

integer- 1 TO integer-2 RECORDS

integer- 1 TO integer-2 CHARACTERS
The VALUE OF clause V-16 .3.8

implementor-name IS data-name
implementor-name IS data-name series

Procedure Division

The READ statement V-23 A. 4
NEXT RECORD

The START statement V-28 4.6
KEY IS phrase

INVALID KEY phrase

The USE statement V-30 4.7
EXCEPTION/ ERROR PROCEDURE

ON file-name series

I

1-26

List of Elcrnents by Module

INDEXED I-O, LEVEL 1 (1 INX 0,2)
PAGE PAllAGRAPH

ELEMENTS NUMBER NUf-fflER

Language Concepts
User-defined words 1-76 5.3.2.2.1

file-name

record-name
1-0 status VI-2 1.3. A

Environment Division

The FILE-CONTROL paragraph VI-5 2.1.1
The file control entry VI-5 2.1.2

SELECT clause

ASSIGN TO implementor-name clause
ORGANIZATION IS INDEXED clause
ACCESS MODE clause

SEQUENTIAL
RANDOM

RECORD KEY clause
FILE STATUS clause

The I-O-CONTROL paragraph VI-8 , 2.1.3
RERUN clause
SAME AREA clause
SAME AREA series

Data Division

File Section VI-11 3.1

The file description entry VI-12 3.3
The record description entry VI-11 3.2
The BLOCK CONTAINS clause VI- 13 3.4

integer CHARACTERS
integer RECORDS

The DATA RECORDS clause VI- 14 3.5
data- name

data-name series

The LABEL RECORDS clause VI- 15 3.6
STANDARD
OMITTED

The RECORD CONTAINS clause VI-16 3.7

integer- 1 TO integer-2 CHARACTERS

The VALUE OF clause, VI- 17 3.8
implementor-name IS literal
xmplementor-name IS literal series

Procedure Division

The CLOSE statement VI-18 4.1
WITH LOCK

file-name series

The DELETE statement VI-20 4.2
INVALID KEY phrase

The OPEIN statement VI-21 4.3
INPUT
OUTPUT

1-0

1-27

List of Elements by Module

INDEXED I-O. LEVEL 1 (1 INX 0,2)

ELEMENTS

PAGE

NUI-IBER
PARAGRAPH
NUf^ER

The OPEN statement (continued)

file-name series

INPUT, OUTPUT, and I-O series
The READ statement. .

INTO identifier

AT END phrase
INVALID KEY phrase

VI- 24 4.4

The REI'JRITE statement
FROM identifier

INVALID KEY phrase

VI-28
4.5

The USE statement VI-32 4.7

EXCEPTION/ ERROR PROCEDURE

ON file-name
ON INPUT
ON OUTPUT

ON 1-0
The WRITE statement VI-33 4.8

FROM identifier

INVALID KEY phrase

1-28

Liat of Elcmcntc by Module

INDEXED I-O, LEVEL 2 (2 INX 0,2)
PAGE PARAGRAPH

ELEMENTS ; NUMBER NUMBER

All elements of 1 INX 0,2 are a part of 2 INX 0,2

Environment Division

The FILE-CONTROL paragraph . . .
The file control entry

SELECT clause

RESERVE integer AREA(S) clause
ACCESS MODE IS DYNAMIC clause
ALTERNATE RECORD KEY clause

WITH DUPLICATES phrase

The I-O-CONTROL paragraph.
SA14E RECORD clause
SAME RECORD AREA series

Data Division

The file description entry VI-12 3.3
The BLOCK CONTAINS clause VI-13 3.4

integer-1 TO integer-2 RECORDS

integer-1 TO integer-2 CHARACTERS
The VALUE OF clause VI-17 3.8

implementor-name IS data-name
implementor-name IS data-name series

Procedure Division

The READ statement VI-24 4.4
KEY IS phrase
NEXT RECORD

The START statement VI- 30 4.6
KEY IS phrase
INVALID KEY phrase

The USE statement VI-32 4.7
EXCEPTION/ ERROR PROCEDURE

ON file-name series

VI-5

VI-5

2.1.1
2.1.2

VI-8

2.1.3

List of Elements by Module

SORT-MERGE, LEVEL 1 (1 SRT 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts
User-defined words 1-76 5.3.2.2.1.

file-name

Environment Division

The FILE-CONTROL paragraph VII-2 2.1.1
The file control entry VII-2 2.1.2

SELECT clause

ASSIGN TO implementor-name clause

Data Division

File Section VII-5 3.1

The sort-merge file description entry VII-5 3.2
The DATA RECORDS clause VII-6 3.3
The RECORD CONTAINS clause VI 1-7 3.4

Procedure Division

The RELEASE statement VII- 12 .4.2
FROM phrase

The RETURN statement VII-13 4.3
INTO phrase

AT END phrase

The SORT statement (only one SORT statement, a STOP

RUN statement, and any associated input-output
procedures allowed in the nondeclarative

portion of a program) VII-14 4.4
KEY data-name

data-name series
ASCENDING series
DESCENDING series

mixed ASCENDING/DESCENDING

INPUT PROCEDURE phrase
THRU

USING phrase
OUTPUT PROCEDURE phrase

THRU

GIVING phrase

1-30

List of Elements by Module

SORT-MERGE, LEVEL 2 (2 SRT 0,2)

ELEMENTS

PAGE
KWIBER

PARAGRAPH

NWIBER

All elements of 1 SRT 0,2 are a part of 2 SRT 0,2

Environment Division

The FILE-CONTROL paragraph

VII-2
VII-2

2.1.1

2.1.2 The file control entry
SELECT clause

The I-O-CONTROL paragraph
SAME RECORD AREA clause

SAME SORT/ SORT-MERGE AREA clause
SAME series

VII-3

2.1.3

Procedure Division
The MERGE statement

VII-8

4.1

KEY data-name
data-name series

ASCENDING series
DESCENDING series

mixed ASCENDING/DESCENDING

COLLATING SEQUENCE phrase
USING phrase
OUTPUT PROCEDURE phrase

THRU

GIVING phrase

The SORT statement (multiple SORT statements are

permitted) VlI-14 4.4
COLLATING SEQUENCE phrase

1-31

List of Elements by Module

REPORT WRITER, LEVEL 1 (1 RPW 0,1)
PAGE PARAGRAPH

ELEMENTS NWIBER NUMBER

Language Concept
User-defined words 1-76 5.3.2.2.1

file-name

report-name
Special registers 1-80 5.3.2.2.1
LINE-COUNTER VIII- 1 1.2.1
PAGE-COUNTER VIII- 1 1.2.2

Data Division

Report Section VIII-2 2.2

The file description entry VIII-3 2.3
Tlie report description entry VIII-4 2.4

The report group description entry VIII-6 2.5
The BLOCK CONTAINS clause VIII-24 2.6
The CODE clause VIII-25 2.7
The CODE-SET clause VIII-26 2.8
The COLUMiNf NUMBER clause VIII-27 2.9
The CONTROL clause VIII-28 2. 10

data-name
data-name series
FINAL

FINAL data-name series

The data-name clause VIII-30 2. 11
The GROUP INDICATE clause VIII-3 1 2.12

The LABEL RECORDS clause VIII-32 2.13
The LINE NUMBER clause VIII-33 2.14

integer
NEXT PAGE

PLUS integer

The NEXT GROUP clause VIII-35 2.15
integer

PLUS integer
NEXT PAGE

The PAGE clause VIII-36 2. 16
integer LINES
HEADING
FIRST DETAIL
LAST DETAIL
FOOTING

The PICTURE clause 11-18 4.7
The RECORD CONTAINS clause VIII-39 2. 17
The REPORT clause VIII-40 2.18

report-name series
The SOURCE clause VIII-4 1 2.19
The SUM clause VIII-42 2.20

UPON data-name series
RESET phrase

The TYPE clause VIII-45 2.21
REPORT HEADING (RH)
PAGE HEADING (PH)
CONTROL HEADING (CH)

1-32

List of Elemerits by Module

REPORT WRITER, LEVEL 1 (1 RPW 0,1)

ELEMENTS
PAGE

NUMBER
PAMGRAPH
NU^ffiER

The TYPE clause (continued)
DETAIL (DE)

CONTROL FOOTING (CF)
PAGE FOOTING (PF)
REPORT FOOTING (RF)

The VALUE IS clause 11-36 4.13
The VALUE OF clause VIII-50 2.22

Procedure Division

The GENERATE statement VIII-51 3.1

report-name
data-name

The INITIATE statement . . ' VIII-53 3.2
report-name

The SUPPRESS statement VIII-54 3.3

report-name series
The TERMINATE statement VIII-55 3.4

report-name series
The USE statement VIII-56 3.5

BEFORE REPORTING

List of Elements by Modi/le

SEGMENTATION, LEVEL 1 (1 SEG 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER N WISER

Language Concepts

User-defined words 1-76 5.3.2.2.1.1

s e gmen t- numb e r

Procedure Division

Segment-numbers IX-4 3.1

Fixed segment-number range 0 through ̂ 9
Non-fixed segmen.t-number range 50 through 99

All sections with the same segment-number must
be together in the source program

SEGMENTATION, LEVEL 2 (2 SEG 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NWIBER

All elements of 1 SEG 0,2 are a part of 2 SEG 0,2

Environment Division

The OBJECT-COMPUTER paragraph
SEGMENT-LIMIT IX- 5 3.2

Procedure Division

Segment-numbers IX-4 3.1

Sections with the same segment-number need not
be physically contiguous in the source program.

1-34

List of Elements by Module

LIBRARY, LEVEL 1 (1 LIB 0,2)

ELEMENTS

Language Concepts
User-defined words,

text-name

All divisions
The COPY statement

PAGE
NUMBER

PARAGRAPH

NUMBER

1-76

5.3.2.2.1.1

X-2

LIBRARY, LEVEL 2 (2 LIB 0,2)

ELEMENTS
PAGE

NWIBER
PARAGRAPH

NUMBER

All elements of 1 LIB 0,2 are a part of 2 LIB 0,2

Language Concepts
User-defined words

library-name

All divisions

The COPY statement.

OF library-name
REPLACING phrase

1-76

X-2

5.3.2.2.1.1

2.

1-35

List of Elements by MoauLc

DEBUG, LEVEL 1 (DEB 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Language Concepts

Special registers 1-80 5.3.2.2.1.3,
DEBUG-ITEM .■ . . XI-1 1.3.1

Environment Division

The SOURCE-COMPUTER paragraph
WITH DEBUGGING MODE clause XI-3 2.1

Procedure Division

USE FOR DEBUGGING statement XI-4 3.1

procedure-name
procedure-name series
ALL PROCEDURES

Debugging lines XI-10 3.2

DEBUG, LEVEL 2 (2 DEB 0,2)
PAGE PARAGRAPH

ELEMENTS NWiBER NWIBER

All elements of 1 DEB 0,2 are a part of 2 DEB 0,2

Procedure Division

USE FOR DEBUGGING statement XI-4 3.1
ALL REFERENCES OF identifier series

file-name series
cd-name series

T-36

Liot of Elements hy Module

INTER-PROGRAM COMMUNICATION 1 (1 IPC 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NUMBER

Data Division

Linkage Section XIl-2 2.1

Procedure Division

Procedure Division header XII-4 3.1
USING phrase

The CALL statement XII-5 3.2
literal

USING data-name series
The EXIT PROGRAM statement XII-8 3.4

INTER-PROGRAM COMMUNICATION 2 (2 IPC 0,2)
PAGE PAPxAGRAPH

ELEMENTS NUMBER NUMBER

All elements of 1 IPC 0,2 are a part of 2 IPC 0,2

Procedure Division

The CALL statement XII-5 3.2
identifier

ON OVERiXOW phrase

The CANCEL statement XII-7 3.3

1-37

Lict of HlcinoiUi hij Module

COMMUNICATION (1 COM 0,2)
PAGE PARAGRAPH

ELEMENTS NUMBER NlI^ffiER
V

Language Concepts

User-defined words 1-76 5.3.2.2.1.1
cd-name

Data Division

Conmunication Section XIII-2 2.1

Tlie communication description entry <. . . . XIII-3 2.2
FOR INPUT clause-

END KEY
MESSAGE COUNT
MESSAGE DATE
MESSAGE TIME

SYMBOLIC QUEUE
SYMBOLIC SOURCE

SYMBOLIC SUB-QUEUE-n
STATUS KEY
TEXT LENGTH

FOR OUTPUi: clause
DESTINATION COUNT

DESTINATION TABLE
INDEXED BY

• ERROR KEY
SYMBOLIC DESTINATION
STATUS KEY
TEXT LENGTH

Procedure Division

. The ACCEPT MESSAGE COUNT statement XIII-12 3.1
The DISABLE statement XIII-13 3.2

INPUT
OUTPUT

KEY identifier/literal

The ENABLE statement XIII-15 3.3
INPUT
OUTPUT

KEY identifier/literal

The RECEIVE statement ... XIII-17 3.4
MESSAGE
INTO identifier

NO DATA phrase
Tlie SEND statement XIII-20 3.5

FROM identifier-1 WITH
WITH EMI
WITH EGI

BEFORE/AFTER AI3VANCING

identifier-3 LINES
integer LINES
mnemonic-name
PAGE

1-38

List of Elements by Module

COMMUNICATION (2 COM 0,2)

ELEMENTS

All elements of 1 COM 0,2 are a part of 2 COM 0,2

Cominunication Section

The communication description entry XIII--3 2.2
FOR INPUT

INITIAL

Procedure Division

The DISABLE statement XIII-13 3.2
INPUT

TERl^IINAL

The ENABLE statement XIII- 15 3.3
INPUT

TERI^lINAL

The RECEIVE statement XIII- 17 3.4
SEGMENT

The SEND statement XIII-20 3.5
FROM identifier- 1
WITH identifieri-2
WITH ESI

PAGE PARAGMPH
NUMBl^R NUMBER

1-39

Liot of Elementii Shouing ULcpooitio/i

3. LIST OF ELEMENTS SHOWING DISPOSITION

3.1 GENERAL DESCRIPTION

This chapter contains a list of al]. elements in American National Standard
COBOL showing the levels in which each clement is introduced. Adjacent to
each level code is a text reference. This reference indicates the page

number of the detailed specification describing the particular element.

T~AO

List of Elements Showing Disposition

PAGE

ELEMENTS LEVEL NUMBER

Language Concepts
Character set

Characters used for words

0,1,...,9,A,B,...,Z - (hyphen or minus) 1 NUC 1-76
Characters used for punctuation

. " () = space 1 NUC 1-65
, ; 2 NUC 1-65

Characters used in arithmetic operations

+ '.. 2 NUC 1-52 Characters used in relations

><= 2 NUC 1-66
Characters used in editing

B 0 + - CR DB Z $, . / 1 NUC 1-58

Separators 1 NUC 1-75
Semicolon and comma not permitted 1 NUC II-l
Semicolon and comma are allowed 2 NUC II- 1

Character-strings 1 NUC 1-76
COBOL words 1 NUC 1-76

Not more than 30 characters-

User-defined words 1 NUC 1-76

cd-name 1 COM ' XI 1 1- 3
condition-name 2 NUC 1-77
data-name

Must begin with an alphabetic character. . 1 NUC II-l
Need not begin with an alphabetic
character 2 NUC II-l

file-name 1 SEQ 1-59
index-name 1 TBL III-2
level-number 1 NUC 1-84

library-name 2 LIB 1-61
mnemonic-name 1 NUC 1-78

paragraph-name] WC 1-78
program-name 1 NUC 1-65
record-name 1 SEQ 1-66
report-name 1 RPW 1-67
routine-name 1 NUC 1-67
section-name 1 NUC 1-78

segment-number 1 SEC IX-4
text-name 1 LIB X-2

System-names 1 NUC 1-78

computer-name
implementor-name

language-name

Reserved words ' 1 NUC 1-79
Key words 1 NUC 1-79
Optional words 1 NUC 1-79
Connectives

Qualifier connectives: OF, IN 2 NUC 1-79
Series connectives: , (se]v-irator comma)

and ; (separator semicolon) 2 NUC 1-79
Logical connectives: AND, OR, AND NOT

OR NOT 2 NUC 1-79

1-41

List of Elements Showing Di sposition

PAGE

ELEMENTS LEVEL NUMBER

Reserved words (continued)

Special registers

LINE-COUNTER, PAGE-COUNTER 1 RPW VIII-1

LINAGE- COUNTER 2 SEQ IV- 3
DEBUG-ITEM ; . 1 DEB XI- 1

Figurative constants

ZERO 1 NUC 1-80

ZEROS, ZEROES , 2 NUC 1-80
SPACE 1 NUC 1-80
SPACES 2 NUC 1-80

HIQI-VALUE, LOW- VALUE 1 NUC 1-80

HIGH- VALUES, LOW- VALUES 2 NUC 1-80

QUOTE 1 NUC 1-80
QUOTES 2 NUC 1-80

' !• ALL literal . 2 NUC 1-80
Special-character words

Arithmetic operators 2 NUC 1-80
Relation characters 2 NUC 1-80

' Literals 1 NUC 1-80
Nonnumeric literals have lengths from 1 through

120 characters

Numeric literals have lengths from 1 through
18 digits

PICTUPxE character-strings 1 NUC 1-82
Comment-entries 1 NUC 1-82

Qualification 2 NUC 1-87
No qualification permitted 1 NUC II-l

Qualification permitted 2 NUC II-l

Subscripting

3 levels 1 TBL 1-89

Indexing

3 levels 1 TBL 1-89

Identification Division

The PROGRAM-ID paragraph 1 NUC II-3
The AUTHOR paragraph i NUC II-2
The INSTALLATION paragraph 1 NUC II-2
The DATE-WRITTEN paragraph 1 NUC II-2
The DATE-COMPILED paragraph 2 NUC II-4
The SECURITY paragraph 1 NUC II-2

Environment Division

Configuration Section

The SOURCE-COffUTER paragraph. 1 NUC II-5
computer-name 1 NUC 11-5

WITH DEBUGGING MODE phrase 1 DEB XI- 3
The OBJECT-COMPUTER paragraph 1 NUC II-6
computer-name 1 NUC II-6
MEMORY SIZE clause. . 1 NUC II-6

List of Elements Showing Dioposition

PAGE

ELEMENTS LEVEL NUMBER

The OBJECT-COMPUTER paragraph (continued)
PROGRAl-I COLLATING SEQUENCE clause 1 NUC II-6
SEGMENT-LIMIT clause 1 SEG lX-5

The SPECIAL-NAMES paragraph
Impleinen tor-name IS mnemonic-name 1 NUC 1 1- 8
ON STATUS 1 NUC 1 1-8
OFF STATUS 1 NUC 1 1- 8

implementor-name series 1 NUC II-8

alphabet-name clause
STANDARD- 1 1 NUC II-8
NATIVE 1 NUC 1 1-8

implementor-name 1 NUC 11-^8

literal. ' 2 NUC II-8
■ CURRENCY SIGN clause. 1 NUC II-8
DECIMAL-POINT clause. , 1 NUC II-8

Input-Output Section
The FILE-CONTROL paragraph

SELECT clause 1 SEQ IV-4

1 REL V-5
1 INX • VI-5
1 SRT VII-2

OPTIONAL phrase 2 SEQ IV-4
ASSIGN TO implementor-name clause 1 SEQ IV-4

1 REL V-5
1 INX VI-5
1 SRT VII-2

RESERVE AREA(S) clause 2 SEQ IV-4

2 REL V-5
2 INX VI-5

ORGANIZATION clause

SEQUENTIAL 1 SEQ IV-4
RELATIVE 1 REL V-5

INDEXED 1 INX VI-5
ACCESS MODE clause

SEQUENTIAL 1 SEQ IV-4

1 REL V-5
1 INX VI-5

RANDOM 1 REL V-5

1 INX VI-5
DYNAMIC 2 REL V-5

2 INX VI-5
RECORD KEY clause . . ' 1 INX VI-5
ALTERNATE RECORD KEY clause 2 IN^ VI-5

FILE STATUS clause 1 SEQ IV-4

1 REL V-5
1 INX VI-5

The I-O-CONTROL paragraph
RERUN clause 1 SEQ IV-6

1 REL V-7
1 IN^X VI- 8

1-43

List of Elements ShowirtQ Disposition

PAGE

ELEMENTS LEVEL NIIT-IBER

The I-O-CONTROL paragraph (continued)
SAME AREA clause 1 SEQ IV-6

1 REL V-7
1 INX VI-8

SAME RECORD AREA clause • . . . 2 SEQ IV-6

2 REL V-7
2 INX VI-8
2 SRT VII-3

SMIE SORT/ SORT-MERGE AREA clause. . 2 SRT VII-3

SA>IE series , . 1 SEQ IV-6

1 REL V-7
1 INX VI-8

MULTIPLE FILE TAPE clause 2 SEQ IV-6

Data Division

CoTTiTnunication Section 1 COM XIII-2

File Section 1 SEQ IV-9

1 REL V-10
1 INX VI-11

1 SRT ̂ VII-5

1 RPw ' VIII-2
Linkage Section 1 IPC XII-2
Report Section. 1 RPW VIII-2

Working-Storage Section 1 NUC II-ll
The communication description entry 1 COM XIII-3
The data description entry 1 NUC 11-12
The file description entry 1 SEQ IV-10

1 REL V-11

1 INX VI- 12
1 RPW VIII-3

The record description entry 1 SEQ IV-9

1 REL V-10
1 INX VI-11

The report description entry 1 RPW VIII-4
The report group description entry 1 RPW VIII-6
The sort-merge description entry 1 SRT VII-5
The BLANK mm ZERO clause 1 NUC 11-14
The BLOCK CONTAINS clause

integer CHARACTERS /RECORDS 1 SEQ IV- 11

1 REL V-12
1 INX VI-13
1 RPW VIII-24

integer-1 TO integer-2 CHARACTERS /RECORDS 2 SEQ IV~11

2 REL V-12
2 INX VI-13
1 RPW VIII-24

The CODE clause 1 RPW VIII-25

The CODE-SET clause 1 SEQ IV-12

1 RPW VIII-26
The COLUMN NUMBER clause 1 RPW VIII-27
The CONTROL clause 1 RPW VIII-2 8
The data-name clause. 1 NUC 11-15

1 RPW VI I I- 30

1-44

List of Elements Showing Disposition

PAGE

ELEMENTS LEVEL NUI-IBER

The DATA RECORDS clause 1 SEQ IV- 13

I REL V-13
1 INX VI- 14
1 SRT VII-6

FILLER • . . . 1 NUC 11-15
The GROUP INDICATE clause 1 RPW VII I- 31

The JUSTIFIED clause (may be abbreviated JUST) 1 NUC 11-16
The LABEL RECORDS clause

STANDARD/OMITTED 1 SEQ IV- 14

1 REL V-14
1 INX VI-15
1 RPW VIII-32

Level-number

01 through 10 (level-number must be 2 digits). ... 1 NUC 11-13
1 through 49 (level-number may be 1 digit) 2 NUC 11-17
66 or 88 , 2 NUC 11-17
77 1 Kmc II- 11

The LINAGE clause 2 SEQ IV- 15
The LINE NUMBER clause ,1 RPW VIII-33

The NEXT GROUP clause 1 RPW ̂ VIII-35
The OCCU'RS clause

integer TIMES 1 TBL III-2
ASCENDING/DESCENDING data-name ... 2 TBL III-2

data-name series 2 TBL III-2
INDEXED BY index-name 1 TBL III-2

integer-1 TO integer-2 DEPENDING ON data-name. ... 2 TBL III-2
The PAGE clause 1 RPW VIII-36
The PICTURE clause (may be abbreviated PIC)

Character-string may contain 30 characters 1 NUC 11-18
Data characters: AX9 1 NUC 11-18

Operational symbols: SVP 1 NUC 11-18
Fixed insertion characters: OB,.$+-DBCR/ 1 NUC 11-21

Replacement or floating characters: + - Z ... 1 NUC 11-21
Currency sign substitution 1 NUC 11-21
Decimal point substitution 1 NUC 11-21

The RECORD CONTAINS clause 1 SEQ IV-18

1 REL V-15
1 INX VI- 16
1 SRT VII-7

1 RPW VIII-39 The REDEFINES clause

May not be nested. . . . 1 NUC 11-27
May be nested 2 NUC 11-27

The RENAl^IES clause 2 NUC 11-29
The REPORT clause 1 RPW VIII-40

The SIGN clause 1 NUC 11-31
The SOURCE clause 1 RPW VIII-41

The SUM clause 1 RPW VIII-42

The SYNCHRONIZED clause (may be abbreviated SYNC) ... 1 N^C 11-33
The TYPE clause 1 RPW VIII-45

1-45

List of Elements Showing Disposition

PAGE

ELEMENTS LEVEL NUMBER

The USAGE clause

COMPUTATIONAL (may be abbreviated COMP) 1 NUC 11-35
DISPLAY 1 NUC 11-35
INDEX 1 TBL III-5

The VALUE clause

literal. . 1 NUC 11-36

literal
series 2 NUC 11-36

literal THRU literal 2 NUC 11-36

literal range series 2 NUC 11-36
The VALUE OF clause

implementor-name IS literal ' 1 SEQ IV-19
1 REL V-16
1 INX VI-17
1 RPW VIII-50

implementor-name IS i data-name .2 SEQ IV-19

2 REL V-16

2 INX VI-17
1 RPW VIII-50

Procedure Division ^
USING phrase in Procedure Division header 1 IPC XII-A
Declaratives 1 SEQ IV-32

1 REL V-30
1 INX VI-32

1 RPW VIII-56
1 DEB XI-4

Arithmetic expressions 2 NUC 11-39
Conditional expressions 1 NUC II-Al

Simple conditions 1 NUC 11-41
Relation condition • • 1 NUC 11-41

Relation operators

[NOT] GREATER THAN 1 NUC 11-42

[NOT] > 2 NUC 11-42

[NOT] LESS THAN 1 NUC 11-42
[NOT] < 2 NUC 11-42

[NOT] EQUAL TO 1 NUC 11-42
[NOT] = 2 NUC 11-42

Comparison

Numeric operands 1 NUC 11-42
Nonnumeric operands

Operands must be of equal size 1 NUC 11-42

Operands may be unequal in size 2 NUC 11-42
Class condition 1 NUC 11-43

NOT option

Switch-status condition 1 NUC 11-44
Condition-name condition. , 2 NUC 11-44

Sign condition 2 NUC 11-44
NOT option

Complex coiiditions 2 NUC 11-45
Logical operators AND, OR, and NOT

Negated simple conditions 2 NUC 11-45
Combined and negated combined conditions 2 NUC 11-46

Abbreviated combined relation condition 2 NUC 11-47

1-46

List of Elements Showing Disposition

PAGE

ELl^MENTS ' LEVEL NUKBER

The arithmetic statements

Arithmetic operands limited to 18 digits 1 NUC 11-51
Overlapping operands , 1 NUC 11-51

1 TBL III-6
Multiple results in arithmetic statements. 2 NUC 11-51

The ACCEPT statement

Only one transfer of data 1 NUC 11-53
No restriction on the number of ♦"ransfers of data . 2 NUC 11-53

FROM phrase 2 NUC 11-53
MESSAGE COUNT phrase 1 COM XIII-12

The ADD statement

identifier/literal series 1 NUC 11-55
TO identifier 1 NUC 11-55
TO identifier series , 2 NUC 11-55
GIVING identifier 1 NUC 11-55
GIVING identifier series 2 NUC 11-55

ROUNDED phrase. 1 NUC 11-55
SIZE ERROR phrase 1 NUC 11-55
CORRESPONDING phrase 2 NUC . 11-55

The ALTER statement

procedure-name 1 NUC 11-5 7
procedure-name series 2 NUC 11-57

The CALL statement

literal 1 IPC XII-5
identifier 2 IPC XII-5
USING data-name 1 IPC XII-5

ON- OVERFLOW phrase 2 IPC XII-5
The CANCEL statement 2 IPC XII-7
The CLOSE statement

Single file-name 1 SEQ IV-20
file-name series 2 SEQ IV-19

1 REL V-17
1 INX VI- 18

REEL 1 SEQ IV-20
UNIT 1 SEQ IV-20
NO REWIND 2 SEQ IV-20
FOR REMOVAL 2 SEQ IV-20
LOCK 2 SEQ IV-20

1 REL V-17
1 INX VI- 18

The- COMPUTE statement 2 NUC 11-58
The DELETE statement 1 REL V-19

1 INX VI-20 The DISABLE statcir.ent

INPUT 1 COM XI 1 1- 13
TEl^MINAL 2 COM XI II- 13
OUTPUT 1 COM XI 1 1- 13

KEY identifier/literal 1 COM XIII-13
The DISPLAY statcr-ent

Only one transfer of data 1 NUC 11-59
No restriction on the nuinbcr of transfers of data . 2 NUC 11-59

UPON phrase 2 NUC 11-59

1-47

List of Elements Showing Disposition

ELEMENTS
PAGE

LEVEL NTOIBER

The DIVIDE statement
INTO Trlpnfifier 1 Niir J- X U X

? Niir IN U TT-fi 1 XX U X

R V T rl p n T 'F 1 p 1" 1 XX D i
n T V T 1 rl p n i- 1 f t p -r 1 In U_> T T — A 1 X i D i

9
VN U ̂

X X U i

T?FMA 1 NT'lTrp rtl i-r o 9 MTTr IN 1 X O 1
ROIlMl^Fn nh r T QP 1

IN U
T T-A 1 XX ox

^T7F FRT^OT? nhi-^iQp 1 T T- A 1 XX ox

Tl^ FKl A "RT F c 1- o f- oi-noT-! t-
TTvlPTTT 1 Y T T T — 1 ̂ AX X X X J

TFRMTNAT 0 YTTT— 1 ^ AX X X X _)
OUTPUT 1 roM AX X X X >J

If FY -j rl pn f -1 f T P -r / 1 T 1- P -r a 1 1 roM
YTTT— 1
A X X i L J

Thp FN'TFR qtpfPTTiPnf 1 Niir

The FXTT qt'pt'Pmpnf
NUC

11-64

Thp FXTT PROC'RAM c;t-p fpmpnl- IPC

XII-8
Thp TFNFR ATF q f p fpmpn f 1 RPW

VIII-5 1
Thp no TO Q ̂ ̂3 ̂ PmPTi 1*- J-ilL- O W X\J o L cl U lilt- L i L.

T^T'nPP^'hlT'P — TlOTTlP TQ I'PrilliyPi^ 1

ix U v.* • ■nynppHiiT'P— n'^mp tc; nnt'innal 2
NUC

11-65
DEPENDING ON nh r^qp 1

NUC
11-65

Thp TF cifot-pTTipnf -Lti^^ 1.1. OUCll-C-llld.iL-

^1"pt"pmP'nt'Q TDiiQ'T hp iTTinPT*pt"n\7P Gt*pt"PTnpn^"Q 1

NUC

11-66
T\r/2iQt"Pr^ Qt"i^t~pmP'nt'c 9 Nur TT-66 XX \J\J
FT 9F 1 NTir TT-66 XX \J

Thp TNTTTATF qfatpmp-nl- 1 RPW
VIII-53

Thp TN^PFrT c!t-pt•pn■|pn^
OtiIx? cincrlp r*h!3T"or*t~Pv H;af~o Tf'om 1 Nur TT-67 XX \J 1

Ml ii 1''"i--r»h'j5T"or»t*0"i* r\ a a "t t~ om 9 TT-67 XX \J 1

Thp MFRfJF c:^p fpmpnf 9
SRT

VTT-8

V X X \J

Thp "N!n\/F c^^^^Pmpn■^-
1 NTir TT-7A XX / H

1 MTir is U ̂ TT-74 XX / H

rm^RF'^PDTsinTNn nhriiQp 2 Nur TI-74

Thp MilTTTPTY c ̂ o f OTitP-n t-
1 11-11 XX / /
9

IN U U
TT-77 XX / /

f^TXTTMr" -1 /4 Q T-i -t- n -F -; Q •>- 1 IN UL. TT— 7 7 X X / /
9 MTTP INUL. T T— 7 7 X X / /

1 Ml IP IN U L. IT — 77 XX / /
CT7T? TTPDnP i-vViv-^oQ 1

■Ml TP

T T — 7 7 XX / /

Thp nPKM c t- 1-omp-n f-
INPUT

... 1

SEQ

IV-24 .

... 2

SEQ

IV-24
1 REL

V-20

1
I NX VI-21

... 2

SEQ

IV-24
NO REWIND ... 2

SEQ

IV-24

1-48

Lint (>J' Klenumlo l^l^oioing iH-apooition

PAGE

ELEMENTS LEVEL NUMBER

The OPEN statement (continued)

I-O

file-name series,

EXTEND

file-name series

INPUT, OUTPUT, I-O, and EXTEND series
INPUT, OUTPUT, and I-O series. . 1 REL

The PERFORM statement

VARYING phrase .
The READ statement

INTO identifier.

INVALID KEY phrase 1 REL

1 INX
NEXT RECORD 2 REL

The RECEIVE statement
MESSAGE
SEGMENT

INTO identifier. .

The RELEASE statement

The RETURN statement

The REWRITE statement

INVALID KEY phrase 1 REL

The SEARCH statement.

1

SEQ

IV- 2 4

2

SEQ

IV-24
1

REL

V-20

1
INX

VI- 21

2

SEQ

IV-24

2

SEQ

IV-24

1 REL

V-20

1
INX VI-2i

1
NUC 11-78

1

NUC
11-78

1
NUC 11-78

2

NUC
11-78

2 NUC
11-78

1

SEQ

IV-28
1

REL . V-23

1
INX

VI-24
1

SEQ

IV-28
1 REL

V-23

1 INX VI-24

1

SEQ

IV-28
1 REL

V-23

1
INX

VI-24

1
REL

V-23

1
INX

VI-24

2 REL

V-23

2

INX
VI-24

2 INX VI-24

1
COM XIII-17 2
COM XIII-17

1
COM XIII-17 1 COM

XIII-17

1
SRT VII-12 1
SRT VII-12

1
SRT VII-13 1

SRT
VII-13

1
SRT VII-13

1

SEQ

IV-31
1 REL

V-26

1 INX VI-28
1 REL

V-26

1
INX VI-28

2 TBL

III-7

1-49

List of Elements Showing Disposition

PAGE

ELEMENTS LEVEL NWffiER

The SEND statement

FROM identifier- 1 2 COM XIII-20
FROM identifier- 1 WITH 1 COM XIII-20
WITH identifier-2 2 COM XIII-20

WITH EGI J- COM XIII-20
WITH EMI •'■ 1 COM XIII-20
WITH ESI 2 COM XIII-20

BEFORE/AFTER ADVANCING 1 COM XIII-20

The SET

statement . 1 TBL TIT-U

The SORT statement.

Only one SORT statement, a STOP RUN statement, and

' any associated input-output procedures allowed
in the nondeclarative portion of a program 1 SRT VII-14

Program not limited to one SORT statement 2 SRT VII- 14
COLLATING SEQUENCE phrase 2 SRT VII-14

The START statement . , . . , 2 REL V-28

2 INX VT-30
The STOP statement 1 NUC 11-85

The STRING statement 2 NUC 11-86
The SUBTRACT statement

identifier/literal series 1 NUC ' 11-89
FR.OM identifier 1 NUC 11-89
FROM identifier series 2 NUC 11-89
GIVING identifier. 1 NUC 11-89
GIVING identifier series 2 NUC 11-89

ROUNDED phrase 1 NUC 11-89
SIZE ERROR phrase 1 NUC 11-89
CORRESPONDING phrase 2 NUC 11-89

The SUPPRESS statement 1 RPW VIII-54

The TERMINATE statement 1 RPW VIII-55
The UNSTRING statement 2 NUC 11-91
The USE statement

EXCEPTION/ERROR PROCEDURE

OH file-name/INPUT/OUTPUT/I-O 1 SEQ IV-32

1 REL V-30

1 INX VI-32
ON file-name series 2 SEQ IV-32

2 REL V-30
2 INX VI-32

ON EXTEND 2 SEQ IV-32

BEFORE reporting' 1 RPW VIII-56
The- USE FOR DEBUGGING statement
procedure-name 1 DEB XI-4
procedure-name series 1 DEB XI-4
ALL PROCEDURES 1 DEB XI-4

ALL REFERENCES OF identifier series 2 DEB XI-4
file-name series 2 DEB XI-4
cd-name series 2 DEB XI-4

1-50

Ijist of Elements Showhig Disposition

PAGE

ELEMENTS LEVEL NUMBER

The WRITE statement

record-name 1 SEQ IV-34

1 REL V-32
1 INX VI-33

FROM identifier . . 1 SEQ IV-34

1 REL V-32
1 INX VI-33

BEFORE/AFTER ADVANCING

integer LINES 1 SEQ IV-34
PAGE. . . . , 1 SEQ IV-34
identifier LINES 2 SEQ IV-34
mnemonic-name 2 SEQ IV-34

AT END-OF-PAGE phrase. . 2 SEQ IV-34
INVALID KEY phrase 1 REL V-32

j 1 INX VI-33

Segmentation

Segment-number 1 SEG IX-4

Fixed segment-number range 0 through 49 1 SEG IX-4

Non-fixed segment-number range 50 through 99 1 SEG ̂ IX-4

SEGMENT-LIMIT clause 2 SEG ' IX-5

Library

COPY statement 1 LIB X-2

OF/IN library-name 2 LIB X-2
REPLACING phrase . 2 LIB X-2

Reference format 1 NUC I- 105

Sequence numbers 1 NUC 1-106
Area A 1 NUC 1-105

Division header 1 NUC 1-106
Section header 1 NUC 1-106

Paragraph header 1 NUC 1-107
Data Division entries 1 NUC 1-107

Area B 1 NUC 1-105

Paragraphs 1 NUC 1-107
Data Division entries 1 NUC 1-107

Continuation of lines 1 NUC 1-106
Nonnumeric literals 1 NUC II-l
Words and numeric literals 2 NUC II- 1

Comment lines 1 NUC 1-108

Asterisk (*) comment lines 1 NUC 1-108
Stroke (/) comment lines 1 NUC 1-108

1-51

Glossary

4. GLOSSARY

4.1 INTRODUCTION

The terms in this chapter are defined in accordance with their meaning as
used in this document describing COBOL and may not have the same meaning for
other languages.

These definitions are also intended to be cither reference material or

introductory material to be reviev/ed prior to reading the detailed language
specifications that follow. For this reason, these definitions are, in most
instances, brief and do not include detailed syntactical rules.

4.2 DEFINITIONS

Abbreviated Combined Relation Condition. The combined condition that

results from the explicit omission of a common subject or a common subject
and common relational operator in a consecutive sequence of relation
conditions .

Access Mode. The manner in which records are to be operated upon within
a file.

Actual Decimal Point. The physical representation, using either of the
decimal point characters period (.) or comma (,), of the decimal point
position in a data item.

Alphabet-Name . A user-defined word, in the SPEClAL-Nz\MES paragraph of the
Environment Division, that assigns a name to a specific character set and/or
collating sequence.

Alphabetic Character. A character that belongs to the following set of

letters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, V,
W, X, Y, Z, and the space.

Alphanumeric Character. Any character in the computer's character set.

Alternate Record Key. A key, other than the prime record key, whose
contents identify a record within an indexed file.

Arithmetic Expression. An arithmetic expression can be an identifier or a
numeric elementary itein, a numeric literal, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed; in parentheses.

Arithmetic Operator. A single character, or a fixed i;:wo-character combin-
ation, that belongs to the following set:

Meani ng

addition
subtraction

multiplication
division

exponentiation

Character
+

/

1-52

Glossary

Ascending Key. A key upon the values of which data is ordered starting
with the lowest value of key up to the highest value of key in accordance with
the rules for comparing data items.

Assumed Decimal Point. A decimal point position V7hich does not involve the

existence of an actual character in a data item. The assumed decimal point
has logical meaning but no physical representation.

At End Condition. A condition caused:

1. During the execution of a READ statement for a sequentially access-
ed file,

2. During the execution of a RETURN statement, when no next logical
record exists for the associated sort or merge file.

3. During the execution of a SEARCH statement, when the search opera-
tion terminates without satisfying the condition specified in any of the

associated WHEN phrases.

Block. A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a portion of a
logical record. The size of a block has no direct relationship to the size of

the file within which the block is contained or to the size of th^. logical
record(s) that are either continued within the block or that overlap the block.

The term is synonymous with physical record.

Body Group. Generic name for a report group of TYPE DETAIL, CONTROL
HEADING or CONTROL FOOTING.

Called Program. A program which is the object of a CALL statement combined
at object time with the calling program to produce a run unit.

Calling Program. A program which executes a CALL to another program.

Cd-Name . A user-defined word that names an MCS interface area described in
a communication description entry within the Communication Section of the Data
Division.

Character. The basic indivisible unit of the language.

Character Position. A character position is the amount of physical storage

required to store a single standard data format character described as usage
is DISPLAY. Further characteristics of the physical storage are defined by
the implementor.

Character-String. A sequence of contiguous characters which form a COBOL

word, a literal, a PICTURE character-string, or a comment-entry.

Class Condition. The proposition, for which a truth value can be deter-
mined, that the content of an item is wholly alphabetic or is wholly numeric.

Clause . A clause is an ordered set of consc-cutive COBOL character-strings
whose purpose is to specify an attribute of an entry.

1-53

COBOL Character Set. The complete COBOL character set consists of the 51
characters listed below:

Character Meaning

0,1,. "..,9 digit A,B, . . . ,Z letter
space (blank)

+ plus sign
- minus sign (hyphen)
* asterisk

/ stroke (virgule, slash)
= equal sign

$ ' currency sign
, . coirana (decimal point)
; semicolon

period (decimal point)
" quotation mark
(left parenthesis

) right parenthesis
> greater than symbol
< less than symbol

COBOL Word. (See Word)

Collating Sequence. The sequence in which the characters that are accept-
able in a computer are ordered for purposes of sorting, merging, and comparing.

Column. A character position vjithin a print line. The columns are numbered

from 1, by 1, starting at the leftmost character position of the print line and

extending to the rightmost position of the print line.

Combined Condition. A condition that is the result of connecting two or

more conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry. An entry in the Identification Division that may be any
combination of characters from the computer character set.

Comment Line. A source program line represented by an asterisk in the

indicator area of the line and any characters from the computer's character
set in area A and area B of that line. The comment line serves only for

documentation in a program. A special form of comment line represented by a
stroke (/) in the indicator area of the line and any characters from the

computer's character set in area A and area B of that line causes page
ejection prior to printing the comment.

Communication Description Entry. An entry in the Communication Section of
the Data Division that is composed of the level indicator CD, followed by a

cd-name, and then followed by a set of clauses as required. It describes the
interface between the Message Control System (MCS) and the COBOL program.

Coinmunication Device. A mechanism (hardware or hardv7s.re/sof tware) capable

of sending data to a queue and/or receiving data from a queue. This mechanism
may be a computer or a peripheral device. One or more programs containing
communication description entries and residing within the same computer define
one or more of these mechanisms.

1-54

Glossary

Communication Section. The section of the Data Division that describes the

interface areas betweeii the MCS and the program, composed of one or more CD

description entries.

Compile Time. The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement. A statement, beginning with a compiler
directing verb, that causes the compiler to take a specific action during
compilation.

Complex Condition. • A condition in which one or more logical operators
act upon one or more conditions. (See Negated Simple Condition, Combined

Condition, Negated Combined Condition.)

Computer-Name . A system-name that identifies the computer upon which the
program is to be compiled or run.

Condition . A status of a program at execution time for which a truth value

can be determined. \«7here the term 'condition' (condition-1 , condition-2, ...)
appears in these language specifications in or in reference to 'condition'
(condition-1, condition-2, ...) of a general format, it is a conditional
expression consisting of either a simple condition optionally parenthesized,
or a combined condition consisting of the syntactically correct combination
of simple conditions, logical operators, and parentheses, for which a truth
value can be determined.

Condition-Name . A user-defined word assigned to a specific value, set of
values, or range of values, within the complete set of values that a condition

al variable may possess; or the user-defined word assigned to a status of an
implementor-def ined switch or device.

Condition-Name Condition. The proposition, for which a truth value can be
determined, that the value of a conditional variable is a member of the set of

values attributed to a condition-name associated x^'ith the conditional variable

Conditional E^qjression. A simple condition or a complex condition specific

in an IF, PERFORI'I, or SEARCH statement. (See Simple Condition and Complex
Condition.)

Conditional Statement. A conditional statement specifies that the truth
value of a condition is to be determined and that the subsequent action of the

object program is dependent on this truth value.

Conditional Variable. A data item one or more values of which has a

condition-name assigned to it.

Configuration Section. A section of the Environment Division that

describes overall specifications of source and object computers.

1-55

Glossary

Connective. A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or text-name
with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions (logical connectives). (See Logical Operator) ^

Contiguous Items. Items that are described by consecutive entries in the

Data Division, and that bear a definite hierarchic relationship to each other.

Control Break. A change in the value of a data item that is referenced in
the CONTROL clause. More generally, a change in the value of a data item that
is ussd to control the hierarchical structure of a report.

Control Break Level. The relative position within a control hierarchy at
which the most major control break occurred.

Control Data Item. A data item, a change in whose contents may produce a
control break.

Control Data-Name. A data-name that appears in a CONTROL clause and refers
to a control data item.

Control Footing. A report group that is presented at the end of the
control group of which it is a member.

Control Group. A set of body groups that is presented for a given value of
a control data item or of FINAL. Each control group may begin with a CONTROL
HEADING, end with a CONTROL FOOTING, and contain DETAIL report groups.

Control Heading. A report group that is presented at the beginning of the
control group of which it is a member.

Control Hierarchy. A designated sequence of report subdivisions defined by

the positional order of FINAL and the data-names within a CONTROL clause.

Counter. A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased by the value

of another number, or to be changed or reset to zero or to an arbitrary posi-
tive or negative value.

Currency Sign. The character '$' of the COBOL character set.

Currency Symbol. The character defined by the CURRENCY SIGN clause in the

SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in a COBOL
source program, the currency symbol is identical to the currency sign.

Current Record. The record which is available in the record area
associated with the file.

Current Record Pointer. A conceptual entity that is used in the selection
of the next record.

1-56

Glossary

Data Clause. A clause that appears in a data description entry in the Data
Division and provides information describing a particular attribute of a data
item.

Data Description Entry. An entry in the Data Division that is composed of

a level-number followed by a data-name, if required, and then followed by a
set of data clauses, as required.

Data Item. A character or a set of contiguous characters (excluding in

either case literals) defined as a unit of data by the COBOL program.

Data-Name . A user-defined word that names a data item described in a data

description entry in the Data Division. When used in the general formats,

'data-name' represents a word which can neither be subscripted, indexed, nor
qualified unless specifically permitted by the rules for that format.

Debugging Line. A debugging line is any line with 'D' in the indicator
area of the line.

Debugging Section. A debugging section is a section that contains a
USE FOR DEBUGGING statement.

Declaratives . A set of one or more special purpose sections, written at

the beginning of the Procedure Division, the first of which is preceded by the
key word DECLARATIVES and the last of which is followed by the key words END
DECLARATIVES. A declarative is composed of a section header, followed by a

USE compiler directing sentence, follov7ed by a set of zero, one or more asso-
ciated paragraphs.

Declarative-Sentence . A compiler-directing sentence consisting of a single
USE statement terminated by the separator period.

Delimiter. A character or a sequence of contiguous characters that identi-
fy the end of a string of characters and separates that string of characters

from the following string of characters. A delimiter is not part of the string
of characters that it delimits.

Descending Key. A key upon the values of which data is ordered starting
with the highest value of key down to the lowest value of key, in accordance

with the rules for comparing data items.

Destination. The symbolic identification of the receiver of a transmission
from a queue.

Digit Position. A digit position is the amount of physical storage required
to store a single digit. This amount may vary depending on the usage of the
data item describing the digit position. Further characteristics of the
physical storage are defined by the implementor.

Division . A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a specific set
of rules. There are four (4) divisions in a COBOL program: Identification,
Environment, Data, and Procedure.

1-57

Gloosarij

Division Header. A combination of words followed by a period and a space
that indicates that beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.

DATA DIVISION.

PROCEDURE DIVISION [USING data-name-1 [data-name-2] ...] .

Dynamic Access. An access mode in which specific logical records can be

obtained from or placed into a mass storage file in a non-sequential manner
(see Random Access) and obtained from a file in a sequential manner (see
Sequential Access), during the scope of the same OPEN statement.

Editing Character. A single character or a fixed two-character combination
belonging to the following set:

Character
Meaning

B
space 0
zero

+

plus
minus

CR
credit

DB debit
Z zero suppress
* check protect
$ currency sign

9 conm:ia (decimal point)
• period (decimal point)
/ stroke (virgule, slash)

Elementary Item. A data item that is described as not being further

logically subdivided.

End of Procedure Division. The physical position in a COBOL source program
after which no further procedures appear.

Entry. Any descriptive set of consecutive clauses terminated by a period
and written in the Identification Division, Environment Division, or-Data
Division of a COBOL source program.

Environment Clause. A clause that appears as part of an Environment
Division entry.

Execution Time. (See 01)jcct Time)

Extend Mode. The state of a file after execution of an OPEN statement,

with the EXTEND phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Figurative Constant. A compiler generated value referenced through the use
of certain reserved words.

File. A collection of records.

1-58

Glossary

File Clause. A clause tliat appears as part of any of the following Data
Division entries:

File description (FD)

Sort-niergc file description (SD)
Coimnunication description (CD)

FILE-CONTROL. The name of an Environment Division paragraph in which the
data files for a given source program are declared.

File Description Entry. An entry in the File Section of the Data Division

that is composed of the level indicator FD , followed by a file-name, and then
followed by a set of file clauses as required.

File-Name . A user-defined word that names a file described in a file

description entry or a sort-merge file description entry within the File
Section of the Data Division.

File Organization. The permanent logical file structure established at the
time that a file is created.

File Section. The section of the Data Division that contains file

description entries and sort-merge file description entries together with
their associated record descriptions.

Format. A specific arrangement of a set of data.

Group Item. A named contiguous set of elementary or group items.

High Order End. The leftmost character of a string of characters.

I-O-CONTROL. The name of an Environment Division paragraph in which object
program requirements for specific input-output techniques, rerun points,
sharing of same areas by several data files, and multiple file storage on a

single input-output device are specified.

I-O Mode. The state of a file after execution of an OPEN statement, with

the 1-0 phrase specified, for that file and before the execution of a CLOSE
statement for that file.

Identifier . A data-name, followed as required, by the syntactically correct
combination of qualifiers, subscripts, and indices necessary to make unique
reference to a data item.

Imperative Statement. A statement that begins with an imperative verb and

specifics an unconditional action to be taken. An imperative statement may
consist of a sequence of imperative statements.

Implementor-Hame . A system-name that refers to a particular feature avail-

able on that implementor ' s computing system.

Index. A computer storage position or register, the contents of which
represent the identification of a particular element in a table.

1-59

ut-osQai-y

Index Data Item. A data item in which the value associated with an

index-name can be stored in a form specified by the implementor.

Index-Name. A user-defined word that names an index associated with a
specific table.

Indexed Data-Name. An identifier that is composed of a data-name, followed
by one or more index-names enclosed in parentheses.

Indexed File. A file with indexed organization.

Indexed Organization. The permanent logical file structure in which each
record is identified by the value of one or more keys within that record.

Input File. A file that is opened in the" input mode.

Input Mode. The state of a file after execution of an OPEN statement, with
the INPUT phrase specified, for that file and before the execution of a CLOSE
statement for that file.

Input-Output File. A file that is opened in the I-O mode.

Input-Output Section. The section of the Environment Division that names

the files and the external media required b}'' an object program and which pro-
vides information required for transmission and handling of data during

execution of the object program.

Input Procedure. A set of statements that is executed each time a record
is released to the sort file.

Integer . A numeric literal or a numeric data item that does not include

any character positions to the right of the assumed decimal point. VJhere the

term 'integer' appears in general formats, integer must not be a numeric data
item, and must not be signed, nor zero unless explicitly allowed by the rules
of that format.

Invalid Key Condition. A condition, at object time, caused when a specific
value of the key associated with an indexed or relative file is determined to
be invalid.

Key. A data item which identifies the location of a record, or a set of
data items which serve to identify the ordering of data.

Key of Reference. The key, either prime or alternate, currently being used
to access records within an indexed file.

Key Word. A reserved word whose presence is required v.'hen the format in
which the word appears is used in a source program.

Language-Name . A system-name that specifies a particular programming
language.

Level JndLc_ator. '^wo alphnbollc characters that identify a specific type
of fiJ.e or a position in hierarhcy.

1-60

Glossary

Level-Number. A user-defined word which indicates the position of a data
item in the hierarchical structure of a logical record or which indicates

special properties of a data description entry. A level-number is expressed
as a one or two digit number. Level-numbers in the range 1 through 49 indi-

cate the position of a data item in the hierarchical structure of a logical

record. Level-numbers in the range 1 through 9 may be written either as a

single digit or as a zero followed by a significant digit. Level-numbers 65,
77, and 88 identify special properties of a data description entry.

Library-Name . A user-defined word that names a COBOL library that is to be
used by the compiler for a given source program compilation.

Library Text. A sequence of character-strings and/or separators in a COBOL
library.

Line. (See Report Line)

I
Line Number. An integer that denotes the vertical position of a report

line on a page.

Linkage Section. The section in the Data Division of the called program
that describes data items available from the calling program. These data
items may be referred to by both the calling and called program.

Literal. A character-string whose value is implied by the ordered set of
characters comprising the string.

Logical Operator. One of the reserved words AND, OR, or NOT. In the

formation of a condition, both or either of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Logical Record. The most inclusive , data item. The level-number for a
record is 01. (See Report Writer Logical Record)

Low Order End. The rightmost character of a string of characters.

Mass Storage. A storage medium on which data may be organized and main-
tained in both a sequential and nonsequential manner.

Mass Storage Control System (MSCS) . An input-output control system that
directs, or controls, the processing of mass storage files.

Mass Storage File. A collection of records that is assigned to a mass
storage medium.

MCS. (See Message Control System)

Merge File. A collection of records to be merged by a MERGE statement.
The merge file is created and can be used only by the merge function.

Message . Data associated with an end of message indicator or an end of
group indicator. (See Message Indicators)

1-61

Glossary

Message Control System (MCS) . A communication control system that supports
the processing of messages.

Message Count. Tlae count of the number of complete messages that exist in
the designated queue of messages. ^

Message Indicators. EGI (end of group indicator) . EMI (end of message
indicator) , and ESI (end of segment indicator) are conceptual indications that

serve to notify the MCS that a specific condition exists (end of group, end of
message, end of segment).

Within the hierarchy of EGI, EMI, and ESI, an EGI is conceptually equiva-
lent to an ESI, EMI, and EGI. An EMI is conceptually equivalent to an ESI

and EMI. Thus, a segment may be terminated by an ESI, EMI, or EGI. A message
may be terminated by an EMI or EGI.

Message Segment. Data that forms a logical subdivision of a message
normally associated with an end of segment indicator. (See Message Indicators)

Mnemonic-Name . A user-defined word that is associated in the Environment

Division with a specified implementor-name .
«

MSGS. (See Mass Storage Control System)

Native Character Set. The implementor-def ined character set associated

with the computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence. The implementor-def ined collating sequence

associated with the computer specified in the OBJECT-COMPUTER paragraph.

Negated Combined Condition. The 'NOT' logical operator immediately
followed by a parenthesized combined condition.

Negated Simple Condition. The 'NOT' logical operator immediately followed
by a simple condition.

Next Executable Sentence. The next sentence to which control will be

transferred after execution of the current statement is complete.

Next Executable Statement. The next statement to which control will be

transferred after execution of the current statement is complete.

Next Record. The record which logically follows the current record of a
file.

Noncontiguous Items. Elementary data items, in the Working-Storage and
Linkage Sections, which bear no hierarchic relationship to other data items.

Nonnumeric Item. A data item whose description permits its contents to be

composed of any combination of characters taken from the computer's character
set. Certain categories of nonnumeric items may be formed from more restrict-

ed character sets.

1-62

Glossary

Nonnumeric Literal, A character-string bounded by quotation marks. The

string of characters may include any character in the computer's character set
To represent a single quotation mark character within a nonnumeric literal,
two contiguous quotation marks must be used.

Numeric Character. A character that belongs to the following set of

digits: 0, 1, 2, 3," A, 5, 6, 7, 8, 9.

Numeric Item. A data item whose description restricts its contents to a

value represented by characters chosen from the digits '0' through '9'; if
signed, the item may also contain a *+' , or other representation of an
operational sign.

Numeric Literal. A literal composed of one or more numeric characters that
also may contain either a decimal point, or an algebraic sign, or both. The
decimal point must not be the rightmost character. The algebraic sign, if
present, must be the leftmost character.

OBJECT-COKPUTER. The name of an Environment Division paragraph in which
the computer environment, within which the object program is executed, is
described.

Object of Entry. A set of operands and reserved words, within a Data
Division entry, that immediately follows the subject of the entry.

Object Program. A set or group of executable machine language instructions
and other material designed to interact with data to provide problem solutions

In this context, an object program is generally the machine language result of
the operation of a COBOL compiler on a source program. Where there is no

danger of ambiguity, the word 'program' alone may be used in place of the

phrase 'object program'.

Object Time. The time at which an object program is executed.

Open Mode. The state of a file after execution of an OPEN statement for
that file and before the execution of a CLOSE statement for that file. The

particular open mode is specified in the OPEN statement as either INPUT,

OUTPUT, I-O or EXTEND.

Operand . Wiereas the general definition of operand is 'that component
which is operated upon', for the purposes of this publication, any lowercase
word (or words) that ap.pears in a statement or entry format may be considered
to be an operand and, as such, is an implied reference to the data indicated

by the' operand.

Operational Sign. An algebraic sign, associated with a numeric data item
or a numeric literal, to indicate whether its value is positive or negative.

Optional Word. A reserved word that is included in a specific format only

to improve the readability of the language and whose presence is optional to
the user when the format in which the word appears is used in a source program

Output File. A file that is opened in either the output mode or extend
mode .

1-63

Glossary

Output Mode. The state of a file after execution of an OPEN statement, with
the OUTPUT or EXTEND phrase specified for that file and before the execution
of a CLOSE statement for that file.

Output Procedure. A set of statements to which control is given during
execution of a SORT statement after the sort function is completed, or during
execution of a MERGE statement after the merge function has selected the next
record in merged order.

Page . A vertical division of a report representing a physical separation
of report data, the separation being based on internal reporting requirements
and/or external characteristics of the reporting medium.

Page Body. That part of the logical page in which lines can be written
and/or spaced.

Page Footing. A report group that is presented at the end of a report page
as determined by the Report Writer Control System.

Page Heading. A report group that is presented at the beginning of a
report page and determined by the Report Writer Control System.

Paragraph. In the Procedure Division, a paragraph-name followed by a
period and a space and by zero, one, or more sentences. In the Identification

and Environment Divisions, a paragraph header followed by zero, one, or more
entries.

Paragraph Header. A reserved word, followed by a period and a space that

indicates the beginning of a paragraph in the Identification and Environment
Divisions. The permissible paragraph headers are:

In the Identification Division;

PROGRAM- ID.
AUTHOR.
INSTALLATION.

DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

In the Environment Division:

SOURCE-COMPUTER

OBJECT-COMPUTER.' ■ SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-Name . A user-defined word that identifies and begins a paragraph
in the Procedure Division.

Phrase. A phrase is an ordered set of one or more consecutive COBOL

character-strings that form a portion of a COBOL procedural statement or of
a COBOL clause.

1-64

GloQsaru

Physical Record. (See Block)

Prime Record Key. A key whose contents uniquely identify a record within
an indexed file.

Printable Group. A report group that contains at least one print line.

Printable Item. A data item, tlie extent and contents of which are speci-
fied by an elementary report entry. This elementary report entry contains a

COLUMN NUllBER clause, a PICTURE clause, and a SOURCE, SUM or VAI.UE clause.

Procedure . A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections, within the Procedure
Division.

Procedure-Name . A user-defined word which is used to name a paragraph or

section in the Procedure Division. It consists of a paragraph-name (which may
be qualified) , or a section-name.

Program-Name . A user-defined word that identifies a COBOL source program.

Pseudo-Text . A sequence of character-strings and/or separators bounded by,
but not including, pseudo-text delimiters.

Pseudo-Text Delimiter. T\i?o contiguous equal sign (=) characters used to
delimit pseudo-text.

Punctuation Character. A character that belongs to the following set:

Character Meaning

, comma

; semicolon

period " quotation mark
(left parenthesis

) right parenthesis

space = equal sign

Qualified Data-Name. An identifier that is composed of a data-name follow-
ed by one or more sets of either of the connectives OF and IN followed by a

data-name qualifier.

Qualifier .

1. A data-name which is used in a reference together with another
data name at a lovjer level in the same hierarchy.

2. A section-name which is used in a reference together with a

paragraph-name specified in that section.

3. A library-name which is used in a reference together with a

text-name associated with that library.

^_cue. A logical collection of messages awaiting transmission or
processing.

1-65

Glossary

Queue Name. A symbolic name that indicates to the MCS the logical path by
which a message or a portion of a completed message may be accessib].e in a

queue .

Random Access. An access mode in which the program-specified value of a
key data item identifies the logical record that is obtained from, deleted
from or placed into a relative or indexed file.

Record. (See Logical Record)

Record Area. A storage area allocated for the purpose of processing the
record described in a. record description entry in the File Section.

Record Description. (See Record Description Entry)

Record Description Entry. The total set of data description entries
associated with a particular record.

Record Key. A key, either the prime record key or an alternate record key,
whose contents identify a record within an indexed file.

Record-Name. A user-defined word that names a record described in a
record description entry in the Data Division.

Reference Format. A format that provides a standard method for describing
COBOL source programs.

Relation. (See Relational Operator)

Relation Character. A character that belongs to the following set:

Relation Condition. The proposition, for which a truth value can be deter-
mined, that the value of an arithmetic expression or data item has a specific

relationship to the value of another arithmetic expression or data item. (See
Relational Operator)

Relational Operator. A reserved word, a relation character, a group of
consecutive reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation condition. The

permissible operators and their meaning are:

Character Meaning

greater than
less than

equal to

>
<

Less than or not less than

Meaning

Greater than or not greater than

Equal to or not equal to

Relative File. A file with relative organization.

1-66

Glossary

Relative Key. A key v.'hose contents identify a logical record in a
relative file.

Relative Organization. The permanent logica]. file structure in which each
record is uniquely identified by an integer value greater than zero, which

specifies the record's logical ordinal position in the file.

Report Clause. A clause, in the Report Section of the Data Division, that

appears in a report description entry or a report group description entry.

Report Description Entry. An entry in the Report Section of the Data
Division that is composed of the level indicator RD, followed by a report
name, followed by a set of report clauses as required.

Report File. An output file whose file description entry contains a REPORT
clause. . The contents of a report file consist of records that are V7ritten

under control of the Report Writer Control System.

Report Footing. A report group that is presented only at the end of a
report.

Report Group. In the Report Section of the Data Division, an Ql level-
number entry and its subordinate entries.

Report Group Description Entry. An entry in the Report Section of the Data

Division that is composed of the level-number 01, tlie optional data-name, a
TYPE clause, and an optional set of report clauses.

Report Heading. A report group that is presented only at the beginning of
a report.

Report Line. A division of a page representing one row of horizontal
character positions. Each character position of a report line is aligned
vertically beneath the corresponding character position of the report line

above it. Report lines are numbered from 1, by 1, starting at the top of the

page.

Report-Name . A user-defined word that names a report described in a report
description entry within the Report Section of the Data Division.

Report Section. The section of the Data Division that contains one or more

report description entries and their associated report group description
entries .

Report Writer Control System (RWCS) . An object time control system,
provided by the implementor, that accomplishes the construction of reports.

Report Writer Logical Record. A record that consists of the Report Writer
print line and associated control information necessary for its selection and

vertical positioning.

Reserved Word. A COBOL word specified in the list of words which may be
used in COBOL source programs, but which must not appear in the programs as

user-defined words or system-names.

f

1-67 ' ^

Glossary

Routiine-Naine. A user-defined word that identifies a procedure written in
a language other than COBOL.

Run Unit. A set of one or more object programs which function, at object
time, as a unit to provide problem solutions.

RWCS . (See Report Writer Control System)

Section. A set of zero, one, or more paragraphs or entries, called a
section body, the first of which is preceded by a section header. Each
section consists of the section header and the related section body.

Section Header. A combination of words followed by a period and a space
that indicates the beginning of a section in the Environment, Data and
Procedure Division.

In the Environment and Data Divisions, a section header is composed of

reserved words followed by a period and a space. The permissible section
headers are:

In the Environment Division:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.

WORlvING-STORAGE SECTION.
LINKAGE SECTION.
COMMUNICATION SECTION.
REPORT SECTION.

In the Procedure Division, a section header is composed of a section-name,

followed by the reserved word SECTION, followed by a segment-number (optional) ,
followed by a period and a space.

Section-Name . A user-defined v^/ord which names a section in the Procedure
Division.

Segment-Number. A user-defined word which classifies sections in the

Procedure Division for purposes of segmentation. Segment-numbers may contain

only the characters '0', '1', '9'. A segment-number may be expressed
either as a one or two digit number.

Sentence . A sequence of one or more statements, the last of which is

terminated by a period followed by a space.

Separator . A punctuation character used to delimit ch£3racter-strings .

Sequential Access. An access mode in which logical records are obtained

from or placed into a file in a consecutive predecessor-to-successor logical
record sequence determined by the order of records in the file.

Sequential File. A file with sequential organization.

1-68

i

Glossary

Sequential Organization. The permanent logical file structure in which a

record is identified by a predecessor-successor relationship established when
the record is placed into the file.

Sign Condition. The proposition, for which a truth value can be determined,
that the algebraic value of a data item or an arithmetic expression is either
less than, greater than, or equal to zero.

Simple Condition. Any single condition chosen from the set:

relation condition
class condition

condition-name condition
switch-status condition

sign condition
message condition

(simple- condition)

Sort File. A collection of records to be sorted by a SORT statement. The
sort file is created and can be used by the sort function only.

Sort-Merge File Description Entry. An entry in the File Section of the
Data Division that is composed of the level indicator SD, followed by a file-

name, and then followed by a set of file clauses as required.

Source . The symbolic identification of the originator of a transmission to

a queue.

SOURCE-COMI^UTER . The name of an Environment Division paragraph in which
the computer environment, within which the source program is compiled, is
described .

Source Item. An identifier designated by a SOURCE clause that provides
the value of a printable item.

Source Program. Although it is recognized that a source program may be
represented by other forms and symbols, in this document it always refers to a
syntactically correct set of COBOL statements beginning with an Identification
Division and ending with the end of the Procedure Division. In contexts where

there is no danger of ambiguity, the word 'program' alone may be used in place
of the phrase 'source program'.

1-69

Glossary

Special Character. A character that belongs to the following set:

Character Meaning
+ plus sign
- minus sign
* asterisk

/ stroke (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon

period (decimal point)
" ' quotation mark
(left parenthesis

) right parenthesis
> greater than symbol
< 1 less than symbol

I

Special-Character Word. A reserved word which is an arithmetic operator or
a relation character.

SPECIAL-NAMES . The name of an Environment Division paragraph in which

implementor-names are related to user specified mnemonic-names.

Special Registers. Compiler generated storage areas whose primary use is
to score information produced in conjunction with the user of specific COBOL
features.

Standard Data Format. The concept used in describing the characteristics
of data in a COBOL Data Division under which the characteristics or properties

of the data are expressed in a form oriented to the appearance of the data on

a printed page of infinite length and breadth, rather than a form oriented to
the manner in which the data is stored internally in the computer, or on a
particular external medium.

Statement . A syntactically valid combination of words and symbols written
in the Procedure Division beginning with a verb.

Sub-Queue . A logical hierarchical division of a queue.

Subject of Entry. An operand or reserved word that appears immediately

following the level indicator or the level-number in a Data Division entry.

Subprogram. (See Called Program)

Subscript . An integer whose value identifies a particular element in a
table.

Subscripted Data-Name. An identifier that is composed of a data-name
followed by one or more subscripts enclosed in parentheses.

Sum Counter. A signed numeric data item established by a SUM clause in the
Report Section of the Data Division. The sum counter is used by the Report
Writer Control System to contain the result of designated summing operations
that take place during production of a report.

1-70

Switch-Status Condition. The proposition, for which a truth value can be
determined, that an implementor-def ined svjitch, capable of being set to an

'on' or 'off status, has been set to a specific status.

Sys tem-Naroe . A COBOL word v/hich is used to communicate with the operating
environment .

Table . A set of logically consecutive items of data that are defined in
the Data Division by means of the OCCURS clause.

Table Element. A data item that bt.longs to the set of repeated items
comprising a table.

Terminal . The originator of a transmission to a queue, or the receiver of
a transmission from a queue.

Text-Name . A user-defined word which identifies library text.

Text-Word . Any character-string or separator, except space, in a COBOL
library or in pseudo-text.

Truth Value. The representation of the result of the evaluation of a
condition in terms of one of two values

true
false

Unary Operator. A plus (+) or a minus (-) sign, which precedes a variable
or a left parenthesis in an arithmetic expression and which has the effect of

multiplying the expression of +1 or -1 respectively.

Unit . A module of mass storage the dimensions of which are determined by
each implementor.

User-Defined Word. A COBOL word that must be supplied by the user to
satisfy the format of a clause or statement.

Variable. A data item whose value may be changed by execution of the
object program. A variable used in an arithmetic expression must be a numeric
elementary item.

Verb . A word that expresses an action to be taken by a COBOL compiler or
object program.

Word . A character-string of not more than 30 characters which forms a
user-defined word, a system-name, or a reserved word.

Working-Storage Section. The section of the Data Division that describes
working storage data items, composed either of noncontigiaous items or of
working storage records or of both.

7 7-Levcl-Description-Entry . A data description entry that describes a
noncontiguous data item with the level-number 77.

1-71

Notation

5. OVERALL LANGUAGE CONSIDERATION

5.1 INTRODUCTION

The language considerations and rules specified In tliis chapter, apply to '
the highest level of the American National Standard COBOL. Wlien a particular

level of a module does not allow all of these language concepts, the restric-
tions will be pointed out in the chapter describing that language element. It

should also be noted that restrictions contained in one module might possibly
affect other modules. For example, series connectives are not allowed in

Level 1 of the Nucleus; therefore, any module vjhich is combined with Level 1

of the Nucleus would have the same restriction. The flowcharts in this docu-
ment illustrate the logic of the statement under which they are contained and

are not meant to dictate implementation.

5.2 NOTATION USED IN FORMATS AND RULES

5.2.1 Definition of a General Format

A general format is the specific arrangement of the elements of a clause
or a statement. A clause or a statement consists of elements as defined below.

Throughout this document a format is sho^Nm adjacent to information defining the
clause or statement. When more than one specific arrangement is permitted,

the general format is separated into numbered formats. Clauses must be writ-
ten in the sequence given in the general formats. (Clauses that are optional

must appear in the sequence shown if they are used.) In certain cases, stated
explicitly in the rules associated with a given format, the clauses may appear

in sequences other than that shown. Applications, requirements or restric-
tions are shown as rules. Throughout this document, specifications unique to

the high level are enclosed in boxes.

5.2.1.1 Syntax Rul es

Syntax rules are those rules that de

or elements are arranged to form larger
statements. Syntax rules also impose r
elements .

fine or clarify tlie order in which v/ords
elements such as phrases, clauses, or

estrictions on individual words or

These rules are used to define or clarify how the statement must be
written, i.e., the order of the elements of the statement and restrictions
on what each element may represent.

5.2.1.2 General Rules

A general rule is a rule that define

ship of meanings of an element or set o
clarify the semantics of the statement

execution or compilation.

5.2.1.3 Elements

s or clarifies tlie meaning or relation-
f elements. It is used to define or

and the effect that it has on either

Elements which make up a clause or a statement consist of uppercase words,

lowercase words, level-numbers, brackets, braces, connectives and special
characters .

1-72

Notation

5.2.1.4 Words

All underlined uppercase words are called key words and are required when

the functions of which they are a part are used. Uppercase words which are

not underlined are optional to the user and may or may not be present in the
source program. Uppercase words, whether underlined or not, must be spelled
correctly.

Lowercase words, in a general format, are generic terms used to represent

COBOL words, literals, PICTURE character-strings, comment-entries, or a
complete syntactical entry that must be supplied by the user. Where generic
terms are repeated in, a general format, a number or letter appendage to the
term serves to identify that term for explanation or discussion.

5.2.1.5 Level -Numbers

When specific level-numbers appear in data description entry formats,
those specific level-numbers are required when such entries are used in a
COBOL program. In this document, the form 01, 02, ... , 09 is used to indi-

cate level-numbers 1 through 9.

5.2.1.6 Brackets and Braces

When a portion of a general format is enclosed in brackets, [] , that

portion may be included or omitted at the user's choice. Braces, { } ,
enclosing a portion of a general format means a selection of one of the
options contained within the braces must be made. In both cases, a choice is

indicated by vertically stacking the possibilities. When brackets or braces
enclose a portion of a format, but only one possibility is shown, the function
of the brackets or braces is to delimit that portion of the format to which a
following ellipsis applies. (See paragraph 5.2.1.7, The Ellipsis.) If an
option within braces contains only reserved words that are not key words, then
the option is a default option (implicitly selected unless one of the other
9ptions is explicitly indicated) .

5.2.1.7 The Ellipsis

In text, the ellipsis (...) may show the omission of a portion of a source
program. This meaning becomes apparent in context.

In the general formats, the ellipsis represents the position at which

repetition may occur at the user's option. The portion of the format that
may be repeated is determined as follows:

Given ... in a clause or statement format, scanning right to left, deter-
mine the] or } immediately to the left of the ... ; continue scanning right

to left and determine the logically matching [or { ; the . . . applies to the
words between the determined pair of delimiters.

5.2.1.8 Format Punctuation

The punctuation characters comma and semicolon are shown in some formats.

Where shown in the formats, they are optional and may be included or omitted
by the user. In the source program these two punctuation characters are

1-73

Notation

interchangeable and either one may be used anywhere one of them is shown in
the formats. Neither one may appear immediately preceding the first clause
of an entry or paragraph.

If desired, a semicolon or comma may be used betv/een statements in the
Procedure Division.

Paragraphs within the Identification and Procedure Divisions, and the
entries within the Environment and Data Divisions must be terminated by the

separator period.

5.2.1.9 Use of Certain Special Characters in Formats

The characters '+', '>', '<', '=', when appearing in formats, although
not underlined, are required when such formats are used.

Separator.^

5.3 LANGUAGE CONCEPTS

5. 3. 1 Character Set

The most basic and indivisible unit of the language is the character. The

set of characters used to form COBOL character-strings and separators includes
the letters of the alphabet, digits and special characters. The character set
consists of 51 characters as defined under COBOL Character Set in the glossary

on page 1-54. In the case of nonnumeric literals, comnient-entries , and comment

lines, the character set is expanded to include the computer's entire character
set. The characters allowable in each type of character-string and as separa-

tors are defined in paragraph 5.3.2 and in the glossary beginning on page 1-52.

Since the character set of a particular computer may not have the characters
defined, single character substitution must be made as required. When such a
character set contains fewer than 51 characters, double characters must be
substituted for the single characters.

5.3.2 Language Structure

The individual characters of the language are concatenated to form

character-strings and separators. A separator may be concatenated with another
separator or with a character-string. A character-string may only be concate-

nated with a separator. The concatenation of character-strings and separators
forms the text of a source program.

5.3.2.1 Separators

A separator is a string of one or more punctuation characters. The rules
for formation of separators are:

(1) The punctuation character space is a separator. Anywhere a space is

used as a separator, more than one space may be used.

(2) The punctuation characters comma, semicolon and period, when immediate-
ly followed by a space, are separators. These separators may appear in a COBOL

source program only where explicitly permitted by the general formats, by

format punctuation rules (see page 1-73, Format Punctuation), by statement and
sentence structure definitions (see page I-lOl, Statements and Sentences), or
reference format rules (see page 1-105, Reference Format).

(3) The punctuation characters right and left parenthesis are separators.
Parentheses may appear only in balanced pairs of left and right parentheses
delimiting subscrij^ts, indices, arithmetic expressions, or conditions.

(4) The punctuation character quotation mark is a separator. An opening
quotation mark must be immediately preceded by a space or left parenthesis; a
closing quotation mark must be immediately followed by one of the separators

^j^dCC, coiuiaa, semicolon, period, or right parenthesis.

Quotation marks may appear only in balanced pairs delimiting nonnumeric

literals except when the literal is continued. (See page 1-106, Continuation
of Lines.)

1-75

character -Strings

(5) Pseudo-text delimiters are separators. An opening pseudo-text delimiter
must be immediately preceded by a space; a closing pseudo-text delimiter must
be immediately followed by one of the separators space, comma, semicolon, or

period .

Pseudo-text delimiters may appear only in balanced pairs delimiting

pseudo-text.

(6) The separator space may optionally immediately precede all separators
except :

a. As specified by reference format rules (see page 1-105, Reference
Format) , and

b. The separator closing quotation mark. In this case, a preceding
space is considered as part of the nonnumeric literal and not as a separator.

i

c. The opening pseudo-text delimiter, where the preceding space is
required .

(7) The separator space may optionally immediately follow any separator

except the opening quotation mark. In this case, a following spaqe is consid-
ered as part of the nonnumeric literal and not as a separator.

Any punctuation character which appears as part of the specification of a

PICTURE character-string or numeric literal is not considered as a punctuation
character, but rather as a symbol used in the specification of that PICTURE

character-string or numeric literal. PICTURE character-strings are delimited
only by the separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the

characters which comprise the contents of nonnumeric literals, comment-entries,
or comment lines .

5.3.2.2 Character-Strings

A character-string is a character or a sequence of contiguous characters
which forms a COBOL word, a literal, a PICTURE character-string, or a comment-
entry. A character-string is delimited by separators.

5.3.2.2.1 COBOL Words

A COBOL word is a character-string of not more than 30 characters which
forms a user-defined word, a system-name, or a reserved word. Within a given
source program these classes form disjoint sets; a COBOL word may belong to
one and only one of these classes.

5.3.2.2.1.1 User-Defined Words

A user-defined v.'ord Is a COBOL word tliat must be supplJcd by the ui-;or to
satisfy the format of a clause or statement, Kacli charactcir of a user-defined

word is selected from the set of characters 'A', 'B', 'C', ... 'Z', '0', ...
'9', and except that the '-' may not appear as the first or last character.

1-76

User-Defined Words

There are seventeen (17) types of user-defined words:

alphab et-name
cd-name

condition-name
data-name
file-name
index-name
level-number

library-name
mnemonic-name

paragraph-name ,

program-name
record-name

report-name
routine-name
section-name

segment-number
text-name

Within a given source program, fifteen (15) of these seventeen (17) types

of user-defined words are grouped into thirteen (13) disjoint set§. The
disjoint sets are:

alphabet-names
cd-name s

condition-names, data-names, and record-names
file-names
index-names

library-names
mnemonic-names

paragraph-names
program-names
report-names
rout iiie -names
section-names
text-names

All user-defined words, except segment-numbers and level-numbers, can belong
to one and only one of these disjoint sets. Further, all user-defined words
within a given disjoint set must be unique, either because no other user-defined
word in the same source program has identical spelling or punctuation, or

because uniqueness can be insured by qualification. (See page 1-87, Uniqueness
of Refierencc.)

With the exception of paragraph-name, section-name, level-number and segment-
number, all user-defined words must contain at least one alphabetic character.

Sc^;!Vient-numberG and level-numbers need not be unique; a given specification of
a segment-nuiuber or level-number may be identical to any other segment -number

or level-nuiiiber and may even be identical to a paragraph— name or section-name.

1-7 7

Sys tem-Names

5.3.2.2.1.1.1 Condition-Name

A condition-name is a name which is assigned to a specific value, set of
values, or range of values, within a complete set of values that a data item

may assume. The data item itself is called a conditional variable.

Condition-names may be defined in the Data Division or in the SPECIAL-NAMES

paragraph vjithin the Environment Division where a condition-name must be assign-
ed to the ON STATUS or OFF STATUS, or both, of implementor-def ined switches.

A condition-name is used only in the RERUN clause or in conditions as an
abbreviation for the relation condition; this relation condition posits that
the associated conditional variable is equal to one of the set of values to

which that condition-name is assigned.

5.3.2.2.1.1.2 Mnemonic-Name

A mnemonic-name assigns a user-defined word to an implementor-narae. These
associations are established in the SPECIAL-NAMES paragraph of the Environment

Division. (See page II-8, The SPECIAL-NAMES Paragraph.)

5.3.2.2.1.1.3 Paragraph-Name

A paragraph-name is a word which names a paragraph in the Procedure Division
Paragraph-names are equivalent if, and only if, they are composed of the same
sequence of the samie number of digits and/or characters.

5.3.2.2.1.1.4 Section-Name

A section-name is a word which names a section in the Procedure Division.

Section-names are equivalent if, and only if, they are composed of the same
sequence of the same number of digits and/or characters.

5. 3. 2. 2. 1-. 1. 5 Other User-Defined Names

See the glossary beginning on page 1-52 for definitions of all other types
of user-defined words.

5.3.2.2.1.2 System-Names

A system-name is a COBOL vjord which is used to communicate with the operat-
ing environment. Rules for the formation of a system-name are defined by the

implementor, except that each character used in the forroiation of a system-name

must be selected from the set of characters 'A', 'B', 'C, ... 'Z', '0', ...
'9', and except that the '-' may not appear as the first or last character

There are three (3) types of system-names:

com.put er-name
implement or -name
language-name

\vithin a given implementation these three types of system-names form
disjoint sets; a given system-name may belong to one and only one of them.

1-78

Reserved Words

The system-names listed on page 1-78 are individually defined In the glossary

beginning on page 1-52.

5. 3. 2. 2. 1. 3 Reserved Words

A reserved word Is a COBOL word that Is one of a specified list of words

which may be used in COBOL source programs, but which must not appear in the

programs as user-defined words or system-names. Reserved words can only be

used as specified in the general formats. (See page 1-109, Reserved Words.)

There are six (6) types of reserved words:

Key words
Optional words _
Connectives

Special registers
Figurative constants

Special-character words

5.3.2.2.1.3.1 Key Words

A key word is a word whose presence is required when the format in which

the word appears is used in a source program. Within each format, such words
are uppercase and underlined.

Key words are of three types:

(1) Verbs such as ADD, READ, and ENTER.

(2) Required words, which appear in statement and entry formats.

(3) Words which have a specific functional meaning such as NEGATIVE,
SECTION, etc.

5.3.2.2.1.3.2 Optional Words

Within each format, uppercase words that are not underlined are called

optional words and may appear at the user's option. The presence or absence
of an optional word does not alter the semantics of the COBOL program in
which It appears .

5.3.2.2.1.3.3 Connectives

There are three types of connectives:

(1) Qualifier connectives that are used to associate a data-name, a

condition-name, a text-name, or a paragraph-name with Its qualifier: OF, IN

(2) Series connectives that link two or more consecutive operands:
, (separator comma) or ; (separator semicolon)

(3) Logical connectives that are used in the formation of conditions:
AND, OR

1-79

5.3.2.2.1.3.4 Special Registers

Certain reserved words are used to name and reference special registers.

Special registers are certain compiler' generated storage areas whose primary
use is to store information produced in conjunction with the use of specific

COBOL features. These special registers include the following: LINAGE-COUNTER

(see page IV-3) , LINE-COUNTER (see page VIII-1) , PAGE-COUNTER (see page VIII-1) ,
and DEBUG-ITEM (see page XI-1).

5.3.2.2.1.3.5 Figurative Constants

Certain reserved words are used to name and reference specific constant

values. These reserved words are specified on page 1-81, Figurative Constant
Values.

5.3.2.2.1.3.6 Special -Character Words

The arithmetic operators and relation characters are reserved words. (See

the glossary beginning on page 1-52.)

5.3.2.2.2 Literals '

A literal is a character-string whose value is implied by an ordered set of
characters of which the literal is composed or by specification of a reserved
word which references a figurative constant. Every literal belongs to one of
two types, nonnumeric or numeric.

5.3.2.2.2.1 Nonnumeric Literals

A nonnumeric literal is a character-string delimited on both ends by quota-

tion marks and consisting of any allowable character in the computer's charac-
ter set. The implementor must allow for nonnumeric literals of 1 through 120

characters in length. To represent a single quotation mark character within

a nonnumeric literal, two contiguous quotation marks must be used. The value

of a nonnumeric literal in the object program is the string of characters
itself, except:

(1) Tlie delimiting quotation marks are excluded, and

(2) Each embedded pair of contiguous quotation marks represents a single
quotation mark character.

All other punctuation characters are part of the value of the nonnumeric

literal rather than separators; all nonnumeric literals are category alpha-
numeric. (See page 11-18, The PICTURE Clause.)

5.3.2.2.2.2 Numeric Literals

A numeric literal is a character-string whose characters are selected from

tne digits '0' through '9', the plus sign, the minus sign, and/or the decimal
point. The implementor must allow for numeric literals of 1 through 18 digits
in length. The rules for the formation of numeric literals are as follows:

(1) A literal must contain at least one digit.

1-80

Figurative Constants

(2) A literal must not contain more than one sign character. If a sign is
used, it must appear as the leftmost character of the literal. If the literal

is unsigned, the literal is positive.

(3) A literal must not contain more than one decimal point. The decimal

point is treated as an assumed decimal point, and may appear anys'/here within
the literal except as the rightmost character. If the literal contains no
decimal point, the literal is an integer.

If a literal conforms to the rules for the formation of numeric liter-
als, but is enclosed in quotation marks, it is a nonnumeric literal and it is

treated as such by the compiler.

(4) The value of a numeric literal is the algebraic quantity represented
by the characters in the numeric literal. Every numeric literal is category

numeric. (See page 11-18, The PICTURE Clause.) The size of a numeric literal
in standard data format characters is equal to the number of digits specified
by the user.

5.3.2.2.2.3 Figurative Constant Values

Figurative constant values are generated by the compiler and referenced

through the use of the reserved words given below. These words must not be
bounded by quotation marks when used as figurative constants. The singular
and plural forms of figurative constants are equivalent and may be used
interchangeab ly .

The figurative constant values and the reserved words used to reference
them are as follows:

ZERO
ZEROS

ZEROES

Represents the value '0', or one or more of the character
'0', depending on context.

SPACE

SPACES
Represents one or more of the character space from the

computer's character set.

HIGH- VALUE
HIGH-VALUES

Represents one or more of the character that has the high-
est ordinal position in the program collating sequence.

LOW- VALUE Represents one or more of the character that has the lowest
LOW-VALUES ordinal position in the program collating sequence.

QUOTE
QUOTES

Represents one or more of the character " . The word
QUOTE or QUOTES cannot be used in place of a quotation mark
in a source program to bound a nonnumeric literal. Thus,
QUOTE ABD QUOTE is incorrect as a way of stating the

nonnumeric literal "ABD".

ALL literal Represents one or more of the string of characters compris-
ing the literal. The literal must be either a nonnumeric

literal or a figurative constant other than ALL literal.
Wlien a figurative constant is used, the word ALL is
redundant and is used for readability only.

1-8]

Data Description Concepts

Wlien a figurative constant represents a string of one or more characters,

the length of the string is determined by the compiler from context according
to the following rules:

(1) \'Jhen a figurative constant is associated with another data item, as
when the figurative constant is moved to or compared with another data item,
the string of characters specified by the figurative constant is repeated
character by character on the right until the size of the resultant string is
equal to the size in characters of the associated data item. This is done

prior to and independent of the application of any JUSTIFIED clause that may
be associated with the data item.

(2) When a figurative constant is not associated with another data item,

as when the figurative constant appears in a DISPLAY, STRING, STOP or UNSTRING
statement, the length of the string is one character.

A figurative constant may be used wherever a literal appears in a format,

except that whenever the literal is restricted to having only numeric char-
acters in it, the only figurative constant permitted is ZERO (ZEROS, ZEROES).

VJlien the figurative constants HIGH-V/J.UE(S) or LOV<J~VALUE (S) are used in
the source program, the actual character associated vrith each figurative
constant depends upon the program collating sequence specified. (See page

II-6, The OBJECT-COMPUTER Paragraph, and page II-8, The SPECIAL-NAVIES
Paragraph.)

Each reserved word which is used to reference a figurative constant value

is a distinct character-string with the exception of the construction 'ALL
literal' which is composed of two distinct character-strings.

5.3.2.2.3 PICTURE Character-Strings

A PICTURE character-string consists of certain combinations of characters

in the COBOL character set used as symbols. See page 11-18, The PICTURE
Clause, for the discussion of the PICTURE character-string and for the rules
that govern their use.

Any punctusition character which appears as part of the specification of a

PICTURE character-string is not considered as a punctuation character, but
rather as a symbol used in the specification of that PICTURE character-string.

5.3.2.2.4 Comment-Entries

A comment-entry is an entry. in the Identification Division that may be any

combination of characters from the computer's character set.

5,3.3 Concept of Computer Independent Data Description

To make data as computer independent as possible, the characteristics or
properties of the data are described in relation to a standard data format

rather than an equipment-oriented format. This standard data format is
criented to general data processing applications and uses the decimal system
to represent numbers (regardless of the radix used by the computer) and the
remaining characters in the COBOL character set to describe nonnuroeric data
items .

T-82

Data Description Concepts

5.3.3.1 Logical Record and File Concept

The approach taken in defining file inf ormtion is to distinguish between
the physical aspects of the file and the conceptual characteristics of tlie
data contained v/ithin the file.

5.3.3.1.1 Physical Aspects of a File

The physical aspects of a file describe the data as it appears on the
input or output ir.edia and include such features as:

(1) The grouping .of logical records -vjithin the physical limitations of
the file medium.

(2) The means by which the file can be identified.

5.3.3.1.2 Conceptual Characteristics of a File

The conceptual characteristics of a file are the explicit definition of
each logical entity within the file itself. In a COBOL program, the input
or output statements refer to one logical record.

It is important to distinguish between a physical record and a logical

record. A COBOL logical record is a group of related information, uniquely
identifiable, and treated as a unit.

A physical record is a ph^^sical unit of information V7hose size and record-
ing mode is convenient to a particular com.puter for the storage of data on an

input or output device. The size of a physical record is hardware dependent
and bears no direct relationship to the size of the file of information
contained on a device.

A logical record may be contained v^ithin a single physical unit; or several

logical records may be contained within a single physical unit; or, in the
case of mass storage files, a logical record may require more than one
physical unit to contain it. There are several source language methods
available for describing the relationship of logical records and physical
units. UTien a permissible relationship has been established, control of
the accessibility of logical records as related to the physical unit must be

provided by the interaction of the object program on the implementor ' s
hardware and/or software system. In this document, references to records

means to logical records, unless the term 'physical record' is specifically
used .

The concept of a logical record is not restricted to file data but is
carried over into the definition of vorking storage. Thus, working storage

may be grouped into logical records and defined by a series of record descrip-
tion entries.

5.3.3.1.3 Record Concepts

The record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name, if required, follow-
ed by a series of independent clauses, as required.

T-83

Data Desar>iption Concepts

5.3.3.2 Concept of Levels

A level concept is inherent in the structure of a logical record. This
concept arises from the need to specify subdivisions of a record for the

purpose of data reference. Once a subdivision has been specified, it may be
further subdivided to permit more detailed data referral.

The most basic subdivisions of a record, that is, those not further sub-
divided, are called elementary items; consequently, a record is said to

consist of a sequence of elementary items, or the record itself may be an
elementary item.

In order to refer to a set of elementary items, the elementary items are
combined into groups. Each group consists of a named sequence of one or more

elementary items. Groups, in turn, may be combined into groups of two or
more groups, etc. Thus, an elementary item may belong to more than one group

5.3.3.2.1 Level -Numbers

A system of level-numbers shov/s the organization of elementary items and
group items. Since records are the most inclusive data items, level-numbers
for records start at 01. Less inclusive data items are assigned higher (not

necessarily successive) level-numbers not greater in value than 49. There
are special level-numbers 66, 77, and 88, which are exceptions to this rule
(see below) . Separate entries are written in the source program for each
level-number used.

A group includes all group and elementary items following it until a level

number less than or equal to the level-number of that group is encountered.
All items which are immediately subordinate to a given group item must be

described using identical level-numbers greater than the level-number used to
describe that group item.

Three types of entries exist for which there is no true concept of level.
These are:

(1) Entries that specify elementary items or groups introduced by a
RENAMES clause,

(2) Entries that specify noncontiguous working storage and linkage data
items ,

(3) Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of

regrouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items, which are not subdivisions

'"•■■^ other items, and are not ther:selves subdivided, have been assigned the
special level-number 77.

Entries that specify condition-names, to be associated with particular

values of a conditional varirjble, have been assigned the, special level-number
88.

1-84

Data Description Concepts

5.3.3.3 Concept of Classes of Data

The five categories of data items (see page 11-18, The PICTURE Clause) are
grouped into three classes: alphabetic, numeric, and alphanumeric. For

alphabetic and numeric, the classes and categories are t;ynonymous. The
alphanum.eric class includes the categories of alphanumeric edited, numeric
edited and alphanumeric (without editing) . Every elementary item except for
an index data item belongs to one of the classes and further to one of the

categories. The class of a group item is treated at object time as alpha-
numeric regardless of the class of elementary items subordinate to that group

item. The following chart depicts the relationship of the class and
categories of data items.

LEVEL OF ITEM CLASS CATEGORY

Elementary

Alphabet! c Alphabetic
Numeric Numeric

Al ph an ume r i c

Numeric Edited

Alphanumeric Edited

Alphanumeric

Nonelementary

(Group)

Alphanumeric

Alphabetic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

5.3.3.4 Selection of Character Representation and Radix

The value of a numeric item may be represented in either binary or decimal

form depending on the equipment. In addition there are several ways of
expressing decimal. Since these representations are actually combinations of

bits, they are commonly called binary-coded decimal f orrns . The selection of
radix is generally dependent upon the arithmetic capability of the computer.
If more than one arithmetic radix is provided, the selection is dependent

upon factors included in such clauses as USAGE. The binary-coded decimal
form is also used to represent characters and symbols that are alphanumeric
items.

The selection of the proper binary-coded alphanumeric or binary-coded
decimal form is dependent upon the capabilit}' of the coEiputer and its
external media.

When a computer provides more than one means of reprosenting data, the
standard data format must be used if not otlierwise specified by the data
description. If both tlie external medium and the computer are capable of
handling more than one form of data representation, or if there is no externa
medium a5;sociated witli the data, the selection is dependent on factors

1-85

Data Description Co'noepts

included in USAGE, PICTURE, etc., clauses. Each implementor provides a
complete explanation of the possible forms on the computer for wliich he is
implementing COBOL. The method used in selecting the proper data form is
also provided to allow the programmer to anticipate and/or control the v
selection .

The size of an elementary data item or a group item is the number of char-
acters in standard data format of the item. Synchronization and usage may

cause a difference between this size and the actual number of characters

required for the internal representation.

5.3.3.5 Algebraic Signs

Algebraic signs fall into tv;o categories: operational signs, which are
associated with signed numeric data items and signed numeric literals to

indicate their algebraic properties; and editing signs, which appear
on edited reports to identify the sign of the item.

The SIGN clause permits the programmer to state explicitly the location

of the operational sign. The clause is optional; if it is not used operation-
al signs will be represented as defined by the impleraentor.

Editing signs are inserted into a data item through the use of the sign
control symbols of the PICTURE clause.

5.3.3.6 Standard Alignment Rules

The standard rules for positioning data within an elementary item depend
on the category of the receiving item. These rules are:

(1) If the receiving data item is described as numeric:

a. The data is aligned by decim.al point and is moved to the receiving
character positions with zero fill or truncation on either end as required.

b. Wlien an assumed decimal point is not explicitly specified, the
data item is treated as if it had an assumed decimal point immediately

following its rightmost character and is aligned as in paragraph la above.

(2) If the receiving data item is a numeric edited data item, the data
moved to the edited data item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character positions

of the data item, except where editing requirements cause replacement of the
leading zeros.

(3) If the rc-ceiving data item is alphanumeric (other than a numeric
edited data item), alphanumeric edited or alphabetic, the sending data is

moved to the receiving character positions and aligned at the leftmost char-
::ter position in the data item with space fill or truncation to the right,

as required.

If the JUSTIFIED clause is specified for the receiving item, these stan-
dard rules arc modified as described in the JUSTIFIED clause on page 11-16.

1-86

Qualification

5.3.3.7 Item Alignment for Increased Object-Code Efficiency

Some computer memories are organized in such a way that there are natural

addressing boundaries in the computer memory (e.g., word boundaries, half-word
boundaries, byte boundaries). The way in which data is stored is determined by

the object program, and need not respect these natural boundaries.

However, certain uses of data (e.g., in arithmetic operations or in
subscripting) may be facilitated if the data is stored so as to be aligned on

these natural boundaries. Specifically, additional machine operations in the
object program may be required for the accessing and storage of data if
portions of two or more data items appear between adjacent natural boundaries,
or if certain natural boundaries bifurcate a single data item.

Data items which are aligned on these natural boundaries in such a way as
to avoid such additional machine operations are defined to be synchronized.
A synchronized item is assumed to be introduced and carried in that form;

conversion to synchronized form occurs only during the execution of a proce-
dure (other than READ or WRITE) which stores data in the item.

Synchronization can be accomplished in two ways:

(1) By use of the SYNCHRONIZED clause

(2) By recognizing the appropriate natural boundaries and organizing the

data suitably without the use of the SYNCHRONIZED clause. (See page 11-34,
The SYNCHRONIZED Clause, General Rule 9.)

Each implementor who provides for special types of alignment will specify
the precise interpretations which are to be made.

5.3.3.8 Uniqueness of Reference

5.3.3.8.1 Qualification

Every user-specified name that defines an element in a COBOL source program
must be unique, either because no other name has the ideBitical spelling aiid
hyphenation, or because the name exists within a hierarchy of names such that
references to the name can be made unique by mentioning c»ne or more of the

higher levels of the hierarchy. The higher levels are called qualifiers and
this process that specifies uniqueness is called qualification. Enough
qualification must be mentioned to make the name unique; however, it may not
be necessary to mention all levels of the hierarchy. Wifchin the Data Division,

all data-names used for qualification must be associated vjith a level indicator
or a level-number. Tb^erefore, t^^;o identical data-names imus t not appear as
entries subordinate to a group item unless they are capable of being made
unique through qualification. In the Procedure Division two identical

paragraph-names must not appear in the same section.

In the hicrardiy of qualification, names associated with a level indicator

_are the most significant, then those names associated with level-number 01,

then names • associated with level-number 02, . . . , 49 . A sc-ct ion-naiiio is the
highest (and the only) qualifier available for a paragraf li-- name . Thus, the
most signiilcant name in the hierarchy must be uiiLque ano- cannot be qualified.

Subscripted or indexed data-names and conditional variables, as well as

1-87

Qualification

procedure-names and data-names, may be made unique by qualification. The
name of a conditional variable can be used as a qualifier for any of its

coiidition-names . Regardless of the available qualification, no name can be
both a data-name and procedure-name.

Qualification is performed by following a data-name, a condition-name, a

paragraph-name, or a text-name by one or more phrases composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent.

The general formats for qualification are:

Format 1

data-name- 1 1

cond it ion-name J

OF

IN
data-name-2

Format 2

paragraph-name

OF

IN section-name

Format 3

text-name
OF
IN library-name

The rules for qualification are as follows:

(1) Each qualifier must be of a successively higher level and within the
same hierarchy as the name it qualifies.

(2) The same name must not appear at two levels in a hierarchy.

(3) If a data-name or a condition-name is assigned to more than one data
item in a source program, the data-name or condition-name must be qualified
each time it is referred to in the Procedure, Environment, and Data Divisions
(except in the REDEFINES clause where qualification is unnecessary and must
not be used.)

(A) A paragraph-name must not be duplicated within a section. I'Jhen a
paragraph-nam.e is qualified by a section-name, the v7ord SECTION must not
appear. A paragraph-name need not be qualified when referred to from within
the same section.

(5) A data-name cannot be subscripted v/hen it is being used as a qualifier.

(6) A name can be qualified even though it does not need qualifications;
if there is more than one combination of qualifiers that ensures uniqueness,

uhc'H any such set can be used. The complete set of qualifiers for a data-name
niust not be the same as any partial set of qualifiers for another data-name.

1-88

Subscripting

Qualified data-names may have any number of qualifiers up to an implementor-
defined limit. This limit must be at least five.

(7) If more than one COBOL library is available to the compiler during

compilation, text-name must be qualified each time it is referenced.

5.3.3.8.2 Subscripting

Subscripts can be used only when reference is made to an individual element
within a list or table of like elements that have not been assigned individual

data-names (see page III-2, The OCCURS Clause).

The subscript can be represented either by a numeric literal that is an

integer or by a data-name. The data-name must be a numeric elementary item
that represents an integer. When the subscript is represented by a data-name,
the data-name may be qualified but not subscripted. In the Report Section,

neither a sum counter nor jthe special registers LINE-COUNTER and PAGE-COUNTER
can be used as a subscript.

The subscript may be signed and, if signed, it must be positive. The low-
est possible subscript value is 1. This value points to the first element of

the table. The next sequential elements of the table are pointed to by sub-
scripts whose values are 2, 3, The highest permissible subscript value,

in any particular case, is the maximum number of occurrences of the item as
specified in the OCCURS clause.

The subscript, or set of subscripts, that identifies the table element is
delimited by the balanced pair of separators left parenthesis and right

parenthesis following the table element data-name. The table element data-

name appended with a subscript is called a subscripted data-name or an
identifier. When more than one subscript is required, they are written in
the order of successively less inclusive dimensions of the data organization.

The format is:

5.3.3.8.3 Indexing

References can be made to individual elements within a table of like elements

by specifying indexing for that reference. An index is assigned to that level
of the table by using the INDEXED BY phrase in the definition of a table. A

name given in the INDEXED BY phrase is known as an index-name and is used to
refer to the assigned index. The value of an index corresponds to the occur-

rence number of an element in the associated table. An index-name must be
initialized before it is used as a table reference. An index-name can be
given an initial value by either a SET, a SEARCH ALL, or a Format 4 PERFORM
statement .

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified when the index-name is followed by

the operator + or -, followed by an unsigned integer numeric literal all

1-89

Indexing

delimited by the balanced pair of separators left parenthesis and right paren-
thesis follov7ing the table element data-name.. The occurrence number resulting

from relative indexing is determined by incrementing (where the operator + is

used) or decrementing (when the operator - is used) , by the value of the
literal, the occurrence number represented by the value of the index. \Vhen

more than one index-name is required, they are written in the order of success-
ively less inclusive dimensions of the data organization.

At the time of execution of a statement which refers to an indexed table

element, the value contained in the index referenced by the index-name asso-
ciated with the table element must neither correspond to a value less than

one (1) nor to a value greater than the highest permissible occurrence number
of an element of the associated table. This restriction also applies to the
value resultant from relative indexing.

The general format for .indexing is:

An identifier is a term used to reflect that a data-name, if not unique in

a program, must be followed by a syntactically correct combination of quali-
fiers, subscripts or indices necessary to ensure uniqueness.

The general formats for identifiers are:

5.3.3.8.4 Identifier

Format 1

r

data-name- 1 data-name-2
(subscript-l subscript-2

J

[, subscript-S] j)

Format 2

data-name-2 (

1-90

Condi tion-l-ome

Restrictions on qualification, subscripting and indexing are:

(1) A data-name must not itself be subscripted nor indexed when that
data-name is being used as an index, subscript or qualifier.

(2) Indexing is not permitted where subscripting is not permitted.

(3) An index may be modified only by the SET, SEARCH, and PERFORM state-
ments. Data items described by the USAGE IS INDEX clause permit storage of

the values associated with index-names as data in a form specified by the
implementor. Such data items are called index data items.

(4) Literal-1, literal-3, literal-5 in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned numeric
integers.

5.3.3.8:5 Condition-Name

Each condition-name must be unique, or be made unique through qualification
and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable or the

conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,

then references to any of its condition-names also require the same combina-
tion of indexing or subscripting.

The format and restrictions on the combined use of qualification, subscript-

ing, and indexing of condition-names is exactly that of 'identifier' except
that data-name-1 is replaced by condition-name-1 .

In the general formats, 'condition-name' refers to a condition-name
qualified, indexed or subscripted, as necessary.

5.3.4 Explicit and Implicit Specifications

There are three types of explicit and implicit specifications that occur
in COBOL source programs:

(1) Explicit and implicit Procedure Division references

(2) Explicit and implicit transfers of control

(3) Explicit and implicit attributes.

5.3.4.1 Explicit and Implicit Procedure Division References

A COBOL source program can refcrenc(> data items either explicitly or
linpl/icitly i.n Procedure Division In teinents . Ad explicit reference occurs
vjlic;n the name of the referenced item is v;ritteii in a Procechjre Division

statemeiit or when the name of the referenced item is copied into the l^rocedure

1-91

Explicit & Implicit

Division by the processing of a COPY statement. An implicit reference occurs
when the item is referenced by a Procedure Division statement without the name

of the referenced item being written in the source statement. An implicit
reference also occurs, during the execution of a PERFORM statement, vzhen the

iiidex or data item referenced by the index-name or identifier specified in the
VARYING, AFTER or UNTIL phrase is initialized, modified, or evaluated by the
control mechanism associated with that PERFORM statement. Such an implicit
reference occurs if and only if the data item contributes to the execution of
the statement.

5.3.4.2 Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from statement

to statement in the sequence in which they were written in the source program
unless an explicit transfer of control overrides this sequence or there is no
next executable statement to which control can be passed. The transfer of

control from statement to statement occurs without the writing of an explicit

Procedure Division statement, and therefore, is an implicit transfer of
control .

COBOL provides both explicit and implicit means of altering the implicit
control transfer mechanism.

In addition to the implicit transfer of control between consecutive state-
ments, implicit transfer of control also occurs vrhen the normal flow is altered

without the execution of a procedure branching statement. COBOL provides the

following types of implicit control flow alterations which override the state-
ment--to-statement transfers of control:

(1) If a paragraph is being executed under control of another COBOL state-
ment (for example, PERFORI-l, USE, SORT and MERGE) and the paragraph is the last

paragraph in the range of the controlling statement, then an implied transfer
of control occurs from the last statement in the paragraph to the control

mechanism of the last executed controlling statement. Further, if a paragraph

is being executed under the control of a PERFORM statement which causes itera-
tive execution and that paragraph is the first paragraph in the range of that

PERFORM statement, an im.plicit transfer of control occurs between the control
mechanism associated with that PERFORM statement and the first statement in

that paragraph for each iterative execution of the paragraph.

(2) When a SORT or MERGE statement is executed, an implicit transfer of
control occurs to any associated input or output procedures.

(3) Mien any COBOL statement is executed vjhich results in the execution

of a declarative section, an implicit transfer of control to the declarative
section occurs. Note tliat another implicit transfer of control occurs after
execution of the declarative section, as described in (1) above.

An expl-^'cit transfer of control consists of an alteration of the implicit
control transfer mechanism by the execution of a procedure branching or

conditional statement. (See page 1-103, Categories of Statements.) An

explicit transfer of control can be caused only by the execution of a proce-
dure branching or conditional statement. The execution or the procedure

branching statement ALTER does not In itself con.stitute an explicit transfer
of control, but af feels the explici t transfer of control i bat occurs wlicn the

1-92

Explicit & Implicit

associated GO TO statement is executed. The procedure branching statement
EXIT PROGRAM causes an explicit transfer of control when the statement is

executed in a called program.

In this document, the term 'next executable statement' is used to refer to
the next COBOL statement to which control is transferred according to the
rules above and the rules associated with each language elemetnt in the
Procedure Division.

There is no next executable statement following:

(1) The last statement in a declarcttive section when the paragraph in

which it appears is not being executed under the control of some other COBOL
statement .

(2) The last statement in a program when the paragraph in which it appears
is not being executed under the control of some other COBOL statement.

5.3.4.3 Explicit and Implicit Attributes

Attributes may be implicitly or explicitly specified. Any attribute which

has been explicitly specified is called an explicit attribute. If. an attri-
bute has not been specified explicitly, then the attribute takes on the default

specification. Such an attribute is kno\im as an implicit attribute.

For example, the usage of a data item need not be specified, in which case

a data item's usage is DISPLAY.

1-93

Identification Division

5.4 IDENTIFICATION DIVISION

5.4.1 General Description

The Identification Division must be included in every COBOL source program.
This division identifies both the source program and the resultant output
listing. In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished and such other
information as desired under the paragraphs in the general format shown below.

5.4.2 Organization

Paragraph headers 'identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,

which is the PROGRAM-ID paragraph. The other paragraphs are optional and

may be included in this division at the user's choice, in order of presenta-
tion shown by the format below.

5.4.3 Structure

The following is the general format of the paragraphs in the Identification
Division and it defines the order of presentation in the source program.

5.4.3.1 General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] ...]

[INSTALLATION. [comment-entry]

•[DATE-WRITTEN. [comment-entry]

[DATE-COMPILED. [comment-entry]

[SECURITY. [comient- entry] ...

...]

...]

...]

]

1-94

EHvironment Division

5.5 ENVIRONMENT DIVISION

5.5.1 General Description

The Environment Division specif! gs a standard method of expressing those

aspects of a data processing problem that are dependent upon the physical
characteristics of a specific computer. This division allows specification
of the configuration of the compiling computer and the object computer. In

addition, information relating to input-output control, special hardware
characteristics and control techniques can be given.

The Environment Division must be included in every COBOL source program.

5.5.2 Organization

Two sections make up the Environment Division: the Configuration Section

and the Input-Output Section.

The Configuration Section deals with the characteristics of the source

computer and the object computer. Tliis section is divided into three para-

graphs: the SOURCE- COMPUTER paragraph, which describes the computer configu-
ration on which the source program is compiled; the OBJ ECT- COMPUTER paragraph,

which describes the computer configuration on which the object program produced

by the compiler is to be run; and the SPECIAL-NAMES paragraph, which relates
the implementor-naraes used by the compiler to the mneraonic-namcs used in the
source program.

The Input-Output Section deals with the information needed to control
transmission and handling of data between external media and the object pro-

gram. This section is divided into two paragraphs: the FILE-CONTROL para-
graph which names and associates the files with external media; and the

I-O-CONTROL paragraph which defines special control techniques to be used in
the object program.

5.5.3 Structure

The following is the general format of the sections and paragraphs in the
Environment Division, and defines the order of presentation in the source

program.

1-95

Environment Division

5.5.3.1 General Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE- COI^IPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. spe cial -names -en t ry]

[INP'UT-OUTPUT SECTION.

FILE- CONTROL. {file-contr.ol-entry } ...
!

[I- 0 -CONTROL. input-output-control-entry]]

5.5. 3„2 Syntax Rules

(1) The Environment Division begins with the reserved words ENVIRONMENT
DIVISION followed by a period and a space.

1-96

Data. Division

5.6 DATA DIVISION

5.6.1 Overall Approach

The Data Division describes the data that the object program is to accept
as input, to manipulate, to create, or to produce as output. Data to be
processed falls into three categories:

a. That which is contained in files and enters or leaves the internal

memory of the computer from a specified area or areas.

b. That which is developed internally and placed into intermediate or
working storage, or placed into specific format for output reporting purposes.

c. Constants v/hich are defined by the user.

5.6.2 Physical and Logical Aspects of Data Description

5.6.2.1 Data Division Organization

The Data Division, which is one of the required divisions in a program, is

subdivided into sections. There are the File, Working-Storage, Linkage,
Communication, and Report Sections.

The File Section defines the structure of data files. Each file is defined

by a file description entry and one or more record descriptions, or by a file

description entry and one or more report description entries. Record descrip-
tions are written immediately following the file description entry. When the

file description specifies a file to be used as a Report Writer output file,
no record description entries are permitted for that file. Report description
entries appear in a separate section of the Data Division, the Report Section.

The Working-Storage Section describes records and noncontiguous data items
which are not part of external data files but are developed and processed
internally. It also describes data items v;hose values are assigned in the
source program and do not change during the execution of the object program.
The Linkage Section appears in the called program and describes data items
that are to be referred to by the calling program and the called program. Its

structure is the same as the Working-Storage Section. The Communication
Section describes the data item in the source program that will serve as the

interface between the MCS and the program. The Report Section describes the
content and format of reports that are to be generated.

1-97

Data Division

5.5.2.2 Data Division Structure

The following gives the general fonaat of the sections in the Data Division,
and defines the order of their presentation in the source program.

DATA DIVISION.

FILE SECTION.

file-description-entry [record-description-entry] ...
sort-merge-file-descript ion-en try {record-description-entry}

WORiaNG-STORAGE SECTION.

7 7- level- description- entry

re cord- description-en try

LINKJ^GE SECTION,

7 7-level- description- entry
record-description-entry

COMMUNICATION SECTION.

Fcoraraunication-description-entry j^record-description-entry 1 '"'J

; REPORT SECTION.

1^ l^report-description-entry ̂ report-group-description-entry J '** J

1-98

Procedure Division

5.7 PROCEDURE DIVISION

5.7.1 General Description

The Procedure Division must be included in every COBOL source program.
This division may contain declaratives and nondeclarative procedures.

5.7.1.1 Declaratives

Declarative sections must be grouped at the beginning of the Procedure
Division preceded by the key word DECLARATIVES and followed by the key words

END DECLARATIVES. (See pages IV-32, V-jO, VI-32, VIII-56, and XI-A for the
USE statement.)

5.7.1.2 Procedures

A procedure is composed of a paragraph, or group of successive paragraphs,
or a section, or a group of successive sections within the Procedure Division.
If one paragraph is in a section, then all paragraphs must be in sections. A

procedure-name is a word used to refer to a paragraph or section in the source
program in which it occurs. It consists of a paragraph-name (which may be
qualified), or a section-name.

The end of the Procedure Division and the physical end of the program is
that physical position in a COBOL source program after which no further

procedures appear.

A section consists of a section header followed by zero, one, or more
successive paragraphs. A section ends immediately before the next section or
at the end of the Procedure Division or, in the declaratives portion of the

Procedure Division, at the key words END DECLARATIVES.

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one, or more successive sentences. A paragraph ends immediately

before the next paragraph-name or section-name or at the end of the Procedure
Division or, in the declaratives portion of the Procedure Division, at the
key words END DECLARATIVES.

A sentence consists of one or more statements and is terminated by a

period followed by a space.

A statement is a syntactically valid combination of vords and symbols
beginning with a COBOL verb.

The term 'identifier' is defined as the word or words necessary to make
unique reference to a data item.

"'.1. 3 Execution

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in which
they are presented for compilation, except where the rules indicate some
other order.

1-99

rvoccdurc Division

5.7.1.4 Procedure Division Structure

5.7.1.4.1 Procedure Division Header

The Procedure Division is identified by and laust begin with the following
header:

PROCEDURE DIVISION [USING data-name-l [, data-name-2] ...].

5. 7. 1.^1.2 Procedure Division Body

The body of the Procedure Division must conform to one of the following
formats :

Format 1 .

[DECLARATIVES.

{ section-nam.e SECTION [segment-number]. declarat.i ve-sen tence

[paragraph-name. [sentence] ...]...}...

END DECLAl^/VTIVES.]

{section-name SECTION [segment-number],

[paragraph-name. [sentence] ...] ... } ...

Format 2

{paragraph-name. [sentence] ... } ...

i

T_ 1 nn

statements and Sentences

5.7.2 Statements and Sentences

There are three types of statements: conditional statements, compiler

directing statements, and imperative statements.

There are three types of sentences: conditional sentences, compiler

directing sentences, and imperative sentences.

5.7.2.1 Conditional Statements and Conditional Sentences

5.7.2.1.1 Definition of Conditional Statement

A conditional statement specifies that the truth value of a condition is
to be determined and that the subsequent action of the object program is

dependent on this truth value.

A conditional statement is one of the following:

a. An IF, SEARCH or RETURN statement.

b. A READ statement that specifies the AT END or INVALID KEY phrase.

c. A WRITE statement that specifies the INVALID KEY or END-OF-PAGE phrase.

d. A START, REWRITE or DELETE statement that specifies the INVALID KEY
phrase.

e. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, SUBTRACT)

that specifies the SIZE ERROR phrase.

f . A RECEIVE statement that specifies a NO DATA phrase.

g. A STRING, UNSTRING or CALL statement that specifies the ON OVERFLOW

phrase.

5.7.2.1.2 Definition of Conditional Sentence

A conditional sentence is a conditional statement, optionally preceded by
an imperative statement, terminated by a period followed by a space.

5.7.2.2 Compiler Directing Statements and Compiler Directing Sentences

5.7.2.2.1 Definition of Compiler Directing Statement

A compiler directing statement consists of a compiler directing verb and
its operands. The compiler directing verbs are COPY, ENTER, and USE (see

page X-2, The COPY Statement; page 11-63, The ENTER Statement; and The USE
Statement on pages IV-32, V-30, VI-32, VIII-56, and XI-4]) . A compiler direct-

ing statement causes the compiler to take a specific action during compilation.

5.7.2.2.2 Definition of Compiler Directing Sentence

A compiler directing sentence is a single compiler directing statement
terminated by a period followed by a space.

I-lOl

statements and Sentences

5.7.2.3 Imperative Statements and Imperative Sentences

5.7.2.3.1 Definition of Imperative Statement

An imperative statement indicates a specific unconditional action to be

taken by the object program. An imperative statement is any statement that
is neither a conditional statement, nor a compiler directing statement. An
imperative statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator. The imperative verbs are:

ACCEPT

ADD (1)
ALTER

CALL (3)
CANCEL
CLOSE

COMPUTE (1)
DELETE (2)
DISABLE
DISPLAY

DIVIDE (1)
ENABLE

EXIT

GENERATE
GO

INITIATE
INSPECT

MERGE
MOVE

MULTIPLY

OPEN
PERFORM
READ (5)

RECEIVE
RELEASE
REWRITE (2)

(1)

(4)

SEND

SET
SORT
START (2)
STOP
STRING (3)

SUBTRACT (1)

SUPPRESS

TERMINATE
UNSTRING (3)
WRITE (6)

(1) Without the optional SIZE ERROR phrase.

(2) Without the optional INVALID KEY phrase.
(3) Without the optional ON OVERFLOW phrase.
(4) Without the optional NO DATA phrase.
(5) Without the optional AT END phrase or INVALID KEY phrase.

(6) Without the optional INVALID KEY phrase or END-OF-PAGE phrase.

iThen 'imperative-statement' appears in the general format of statements,

' iriperative-statement ' refers to that sequence of consecutive imperative
"t -ttements that must be ended by a period or an ELSE phrase associated with
a previous IF statement or a WHEN phrase associated with a previous SEARCH
statement.

5,7.2.3.2 Definition of Imperative Sentence

An imperative sentence Is an imperative statement terminated by a period
followed by a space.

Categories of Statements

5.7.2.4 Categories of Statements
I

Category

Arithmetic

Compiler Directing

Conditional

Data Movement

Verbs

ADD
COMPUTE

DIVIDE
INSPECT (TALLYING)
MULTIPLY

V SUBTRACT

COPY
ENTER

USE

f ADD (SIZE ERROR)
CALL (OVERFLOW)

COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DIVIDE (SIZE ERROR)
IF

MULTIPLY (SIZE ERROR)

READ (END or INVALID KEY)
RECEIVE (NO DATA)
RETURN (END)

REWRITE (INVALID KEY)
SEARCH

START (INVALID KEY)

STRING (OVERFLOW)
SUBTRACT (SIZE ERROR)

UNSTRING (OVERFLOW)

\^ WRITE (INVALID KEY or END-OF-PAGE)

C ACCEPT (DATE, DAY, or TIME)
ACCEPT MESSAGE COUNT

J INSPECT (REPLACING)
\ MOVE

STRING

^ UNSTRING
Ending STOP

1-103

Categories of Statements

Category Verbs

Input-Output

Inter-Program
Communi cat ing

f ACCEPT (identifier) CLOSE

DELETE

DISABLE
DISPLAY

ENABLE

OPEN
READ
RECEIVE

REWRITE
SEND

START
STOP (literal)

V WRITE

CALL
CANCEL

Ordering

MERGE
RELEASE

RETURN
SORT

Procedure Branching

ALTER
CALL
EXIT

GO TO
PERFORM

Report Writing

GENERATE

INITIATE
SUPPRESS
TERMINATE

Table Handling
SEARCH

SET

in Engiish."'" '"^^ recognized that it is not a verb

5.7.2.4.1 Specific Statement Formats

^he''rest?ictfnn ''^'T''' ^^g^^^-^ ̂ i^h a detailed discussion of
'•eouencf in Jhe .n associated with each, appear in alphabetic

n p'L XV f f °f ̂^^^--tion of this document. (See the index begin-

speclfic CerbT ̂ ^^^^"^^^^ ̂ ^^^ P^ge containing the discussion of a

1-104

Reference Format

5.8 REFERENCE FORMAT

5.8.1 General Description

The reference format, which provides a standard method for describing

COBOL source programs, is described in terms of character positions in a line

on an input-output medium. Each implementor must define what is meant by
lines and character positions for each input-output medium used with his

compiler. Within these definitions, each COBOL compiler accepts source pro-
grams written in reference format and produces an output listing of the

source program input in reference fon^at.

The rules for spacing given in the discussion of the reference format
take precedence over all other rules for spacing.

The divisions of a source program must be ordered as follows: the Identif

cation Division, then the jEnvironment Division, then the Data Division, then
the Procedure Division. Each division must be written according to the rules
for the reference format.

5.8.2 Reference Format Representation

The reference format for a line is represented as follows: ■si

Margin
L

Margin Margin Margj
C A B

1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3

Margin

R

Sequence Number Area

J'

Area A

—

Area B

Indicator Area

Margin L is immediately to the left of the leftmost character position of
a line.

Margin C is between the 6th and 7th character positions of a line.

Margin A is between the 7th and 8th character positions of a line.

Margin B is between the 11th and 12th character positions of a line.

Margin R is immediately to the right of the rightmost character position
of a line.

The sequence number area occupies six character positions (1-6) , and is
between margin L and margin C.

The indicator area is the 7th character position of a line.

Reference Format

Area A occupies character positions 8, 9, 10, and 11, and is between

margin A and margin B. j

Area B occupies a finite number of character positions specified by the

implementor; it begins immediately to the right of margin B and terminates
immediately to the left of margin R.

5.8.2.1 Sequence Numbers

A sequence number, consisting of six digits in the sequence area, may be
used to label a source program line.

5.8.2.2 Continuation of Lines

Whenever a sentence, entry, phrase, or clause requires more than one line,

it may be continued by starting subsequent line(s) in area B. These subse-
quent lines are called the continuation line(s). The line being continued is

called the continued line. Any word or literal may be broken in such a way
that part of it appears on a continuation line.

A hyphen in the indicator area of a line indicates that the first nonblank
character in area B of the current line is the successor of the Igst

nonblank character of the preceding line without any intervening space. How-
ever, if the continued line contains a nonnumeric literal without closing

quotation mark, the first nonblank character in area B on the continuation
line must be a quotation mark, and the continuation starts with the character

immediately after that quotation mark. All spaces at the end of the continued
line are considered part of the literal. Area A of a continuation line must
be blank.

If there is no hyphen in the indicator area of a line, it is assumed
that the last character in the preceding line is followed by a space.

5.8.2.3 Blank Lines

A blank line is one that is blank from margin C to margin R, inclusive.

A blank line can appear anywhere in the source program, except immediately
preceding a continuation line. (See paragraph 5.8.2.2 above.)

5.8.3 Division, Section, Paragraph Formats

5.8.3.1 Division Header

The division header must start in area A.

5.8.3.2 Section Header

TV e section header must start in area A.

A section consists of paragraphs in the Environment and Procedure Divisions
and Data Division entries in the Data Division.

1-106

Reference Format

5.8.3.3 Paragraph Header, Paragraph-Name and Paragraph

A paragraph consists of a paragraph-name followed by a period and a space
and by zero, one or more sentences, or a paragraph header followed by one or
more entries. Comment entries may be included within a paragraph as indicated

in paragraph 5.8.6 on page 1-108. The paragraph header or paragraph-name
starts in area A of any line following the first line of a division or a
section.

The first sentence or entry in a paragraph begins either on the same line

as the paragraph header or paragraph-name or in area B of the next nonblank
line that is not a comment line. Successive sentences or entries either

begin in area B of the same line as the preceding sentence or entry or in
area B of the next nonblank line that is not a comment line.

When the sentences or entries of a paragraph require more than one line

they may be conti.^iued as described in paragraph 5.8.2.2 on page 1-106.

5.8.4 Data Division Entries

Each Data Division entry begins with a level indicator or a level-number,
followed by a space, followed by its associated name (except in the Report
Section), followed by a sequence of independent descriptive clauses. Each
clause, except the last clause of an entry, may be terminated by either the

separator semicolon or the separator comma. The last clause is always termi-
nated by a period followed by a space.

There are two types of Data Division entries: those which begin with a

level indicator and those which begin with a level-number.

A level indicator is any of the following: FD, SD, RD, CD.

In those Data Division entries that begin with a level indicator, the
level indicator begins in area A followed by a space and followed in area B
with its associated name and appropriate descriptive information.

Those Data Division entries that begin with level-nximbers are called data
description entries.

A level-number has a value taken from the set of values 1 through 49, 66,

77, 88. Level-numbers in the range 1 through 9 may be written either as a
single digit or as a zero followed by a significant digit. At least one space

must separate a level-number from the word following the level-number.

In those data description entries that begin with a level-number 01 or 77,
the level-number begins in area A followed by a space and followed in area B
by its associated record-name or item-name and appropriate descriptive informa-
tion.

Successive data description entries may have the same format as the first

or may be indented according to level-number. The entries in the output list-
ing need be indented only if the input is indented. Indentation does not

affect' the magnitude of a level-number.

I- 107

Reference Format

When level-numbers are to be indented, each new level-number may begin
any number of spaces to the right of margin A. The extent of indentation to
the right is determined only by the width of the physical medium.

I
5.8.5 Declaratives

The key word DECLARATIVES and the key words END DECLARATIVES that precede
and follow, respectively, the declaratives portion of the Procedure Division

must appear on a line by itself. Each must begin in area A and be followed
by a period and a space.

5.8.6 Comment Lines .

A comment line is any line with an asterisk in the continuation indicator
area of the line. A comment line can appear as any line in a source program
after the Identification IJivision header. Any combination of characters from

the computer's character set may be included in area A and area B of that line.
The asterisk and the characters in area A and area B will be produced on the

listing but serve as documentation only. A special form of comment line
represented by a stroke in the indicator area of the line causes page
ejection prior to printing the comment.

Successive comment lines are allowed. Continuation of comment lines is

permitted, except that each continuation line must contain an in the
indicator area.

1-108

Reserved Words

5.9 Reserved Words

The following is a list of reserved v7ords:

ACCEPT
ACCESS

ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE

AND
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT

AUTHOR

BEFORE

BLANK
BLOCK
BOTTOM
BY

CALL
CANCEL

CD
CF
CH
CHARACTER

CHARACTERS

CLOCK-UNITS
CLOSE
COBOL
CODE

CODE-SET
COLLATING
COLWIN
COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE

CONFIGURATION
CONTAINS
CONTROL
CONTROLS
COPY
CORR

CORRESPONDING

COUNT

CURRENCY

DATA

DATE

DATE-COMPILED
DATE-WRITTEN
DAY

DE ̂

DEBUG-CONTENTS

DEBUG- ITEM

DEBUG-tLINE
DEBUG-NAME

DEBUG- SUB- 1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUGGING

DECniAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING

DESTINATION
DETAIL

DISABLE
DISPLAY

DIVIDE

DIVISION
DOWN
DUPLICATES
DYNAMIC

EGI
ELSE
EMI

ENABLE
END

END-OF-PAGE
ENTER

ENVIRONMENT
EOP

EQUAL ERROR
ESI

EVERY
EXCEPTION
EXIT

EXTEND

FD

FILE
FILE-CONTROL
FILLER

FINAL
FIRST

FOOTING
FOR

FROM •
GENERATE
GIVING
GO
GREATER
GROUP

HEADING

HIGH-VALUE
HIGH-VALUES

I-O
I-O-CONTROL

IDENTIFICATION

IF
IN INDEX
INDEXED

INDICATE • INITIAL

INITIATE
INPUT

INPUT-OUTPUT

INSPECT
INSTALLATION
INTO
INVALID

IS

JUST
JUSTIFIED

KEY

LABEL

LAST

LEADING
LEFT
LENGTH

LESS
LIMIT

LIMITS

LINAGE

LINAGE-COUNTER

LINE
LINE-COUNTER
LINES

LINKAGE

LOCK
LOW-VALUE
LOW-VALUES

MEMORY

MERGE

MESSAGE

MODE MODULES

MOVE

MULTIPLE
MULTIPLY

NATIVE
NEGATIVE
NEXT

NO
NOT

NUMBER
NUMERIC

OBJECT-COMPUTER

OCCURS

OF
OFF
OMITTED

ON OPEN
OPTIONAL

OR ORGANIZATION

OUTPUT
OVERFLOW

PAGE

PAGE-COUNTER
PERFORM

PF PH

PIC

PICTURE

1-109

Reserved Words

PLUS

• POINTER
POSITION
POSITIVE
PRINTING
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM- ID

QUEUE

QUOTE
QUOTES

RANDOM

RD
READ
RECEIVE
RECORD
RECORDS
REDEFINES
REEL

REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES

REPLACING
REPORT

REPORTING
REPORTS

RERUN
RESERVE
RESET

RETURN
REVERSED

REWIND
REWRITE

RF
RH
RIGHT
ROUNTDED
RUN

SAME

SD w
SEARCH

SECTION
SECURITY
SEGMENT

SEGMENT-LIMIT
SELECT

SEND

SENTENCE

SEPARATE

SEQUENCE

SEQUENTIAL ' SET
SIGN

SIZE

SORT

SORT-MERGE
SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES
STANDARD

STANDARD- 1
START
STATUS
STOP

STRING

SUB-QUEUE- 1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT

SUM
SUPPRESS

SYMBOLIC
SYNC

SYNCHRONIZED

TABLE
TALLYING
TAPE

TERMINAL

TERl'lINATE
TEXT
THAN

THROUGH
THRU

TIME
TIMES
TO

TOP

TRAILING

TYPE

UNIT
UNSTRING

UNTIL

UP
UPON
USAGE
USE

USING

VALUE
VALUES
VARYING

WHEN

WITH
WORDS
WORKING-STORAGE
WRITE
ZERO .

ZEROES

ZEROS

+

I

>
<

I-llO

Composite Language Skeleton

6. COMPOSITE LANGUAGE SKELETON

6.1 GENERAL DESCRIPTION

This chapter contains the composite language skeleton of the American
National Standard COBOL. It is intended to display complete and syntactically
correct formats.

The leftmost margin on pages 1-112 through 1-123 is equivalent to margin A
in a COBOL source program. The first indentation after the leftmost margin is

equivalent to margin B in a COBOL source program. (See page 1-105 for descrip-
tion of margin A and margin B.)

On pages 1-124 through 1-132 the leftmost margin indicates the beginning of
the format for a new COBOL verb. The first indentation after the leftmost

margin indicates continuation of the format of the COBOL verb.

The following is a summary of the formats shown on pages 1-112 through
1-135.

Page

I-

112: Identification Division general format

Page

I-

113: Environment Division general format

Page

I-

115: The three formats of the file control entry

Page

I-

117: Data Division general format

Page

I-

119: The three formats for a data description entry

Page

I-

120: The two general formats for a communication description entry

Page

I-

121: The three formats for a report group description entry

Page

I-

123: Procedure Division general format

Page

I-

124: General format of verbs listed in alphabetical order

Page

I-

133: General format for conditions

Page

I-

134: Formats for qualification, subscripting, indexing, and
an identifier

Page

I-

135: General format for COPY statement

I-lll

Identification "Division

GENERAL FORMAT FOR IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

PROGRAM- ID. program-name.

[author. [comment-entry J . . .]

[installation. [comment- en try] . . .]

[date-written. [comment-entry] . . .]

[date- COMPILED. [comment-entry] ...J

i SECU'RITY. [comment-entry] ... J

•i

]

[■

c

.1

i
J

T-n9

Envirownent Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [wiTH DEBUGGING MODE] .

OBJECT-COMPUTER. computer-name

f WORDS
 ̂ , ME^IORY SIZE integer \ CHARACTERS

■

[modules

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number] .

SPECIAL-NAMES. [, implementor-name

IS mnemonic-name [, ON STATUS IS condition-name-l [, OFF STATUS IS condition-name-2]1

IS mnemonic-name [, OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-l]]

ON- STATUS IS condition-name-l [, OFF STATUS IS condition-name- 2]

I^OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name-l] ^

f STANDARD- 1

I NATIVE , alphabet-name IS implementor-name

f THROUGH ^ literal-1 \ THRU lj.teral-2

ALSO literal-3 [, ALSO literal-4] . . .

THROUGH

literal-5
THRU

literal-6

ALSO llteral-7 [, ALSO literal-s] . . .

CURRENCY SIGN IS literal-9]

[» DECIMAL-POINT IS COMMA] . "j

1-113

Environment Division

GENERAL FORMAT FOR ENVIRONMENT DIVISION

C INPUT-OUTPUT SECTION.

FILE-CONTROL.

{file-control-entry} ...

["l-O-CONTROL.

; RERUN

ON 1

I file-name-

1]

r-namej

EVERY j I [m. OK] {^1 A linteger-I RECORDS
integer-2 CLOCK-UNITS

I condition-name

OF file-name-2

SAME

RECORD

SORT

SORT-MERGE
AREA FOR file-name-3 {, file-name-Aj

[' MULTIPLE FILE TAPE CONTAINS file-name-5 [POSITION integer-s]

[, file-name-6 [POSITION integer-A]] ...]...

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 1:

SELECT [optional] file-name

ASSIGN TO implementor-name-1 [, iniplementor-name-2]

; RESERVE integer-1

AREA 1 AREAS I

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1] .

FORMAT 2

SELECT file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] . .

; RESERVE integer-1
AREA
AREAS J

ORGANIZATION IS RELATIVE

; ACCESS MODE IS
SEQUENTIAL [, RELATIVE KEY IS data-name-l]

l^jf^c] ' ̂ ^^^^^^^ data-name-l
j

[; FILE STATUS IS data-name-2] .

1-115

Environment Division

GENERAL FORMAT FOR FILE CONTROL ENTRY

FORMAT 3:

SELECT file-name

ASSIGN TO implementor-name-1 [, impleraentor-name-2] ...

AREA
AREAS ; RESERVE integer-1

i
t • ,

; ORGANIZATION IS INDEXED

\ (SEQUENTIAL^ ACCESS MODE IS \ RANDOM

DYNAMIC'

; RECORt) KEY IS data-name- 1

ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] ...

[; FILE STATUS IS data-narae-3] .

■ORMAT 4:

SELECT file-name ASSIGN TO implemen tor-name- I f , implementor-name-2 1

I
I f

l!

i'

jr

1-116

Data Division

GENERAL FORMAT FOR DATA DIVISION

DATA DIVISION.

[FILE SECTION.

j^FD file-name (records]

CHivRACTERS j ; BLOCK CONTAINS [integer-1 TO] integer-2

RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

(RECORD IS] (STANDARD^

' — [RECORDS are] [OMITTED j

; VALUE OF implementor-name-1
IS i data-name- 11 I^literal-l J

1 ̂ o -rn (data-nar , implementor-name-2 IS \ . ̂ -,

(_lxteral-

i-name-2

-2

^ nATA f RECORD IS) , ̂ Q r J . /I DATA i { aata-name-3 [, aata-name-4 J 1 RECORDS ARE_

LINAGE IS ̂ data-name-5^ ̂ ^^^^ inteeer-5

, WITH FOOTING AT
] data-name-6

' (integer-6

, LINES AT BOTTOM ■
, LINES AT TOP |

 ̂̂ta-name-?, (^integer-/

[' CODE- SET IS alphabet-name]

(REPORT IS ^ , r ^ .] 1

' \ REPORTS are] i^epoi^t-name-1 [, report-name-2 J ... J .

[record-description-entry] . . . j . . .

[SD file-name

[; RECORD CONTAINS [integer-1 To] integer-2 CHARACTERS]

f RECORD IS 1 ̂ , r J o 1
, f data-name- 1 [, data-name-2 J

data-name-8

^integer-8

; DATA 1 RECORDS ARE

^" ■'^-r?escription-entry }]

[WORKING- STOPJ^GE SECTION.

7 7- level-description-entry
record-description-entry

1-117

Data Division

GENERAL FORMAT FOR DATA DIVISION

[linkage section.

77-level-descript ion-entry

record-description-entry

[COmUNICATION SECTION,

[communication-descript ion-entry

[record-description-entry] • • •] • • •]

[report section.

[RD report-name

[; CODE literal-l]

r f control is 1 (data-name-1 [, data-nam
e-2] ...

P I controls are! [final [, data-name-1 [, data-name-2 J

integer- 1 [» READING integer ; PAGE
LIMIT IS
LIMITS ARE

[, FIRST DETAIL integer- s] [, LAST DETAIL integer-4]

[, FOOTING integer-5]] .

^report-group-description-entry] • • *] * * ']

1-118

Data Division

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

FORMAT 1:

level-number
f data-name- 1
1 FILLER

; REDEFINES data-name-2

(picture! ,

ipYc ' character-strxng

COMPUTATIONAL

iJ^5A£EisJ
index

; [sign is] I trailing] [SEPARATE CHARACTER]

OCCURS (integer- 1 TO integer-2 TIMES DEPENDING ON data-name-rS

\integer-2 TIMES

[ASCENDING 1 ̂ ^.v tc ̂ . / \ a ̂ ^^
^ ^ K^gy jg data-name-4 [, data-name-5 J ... DESCENDING

'left

■
1

RIGHT

[indexed by

[synchronized^ ' [SYNC

(justified")

[; blank when zero]

[; VALUE IS literal] .

index-name- 1 [, Ind ex-name- 2] •••]

FORMAT 2:

66 data-name-1; i-'.ENAMES data-name-2 (through
"[thru

data-name-3

FORMAT 3:

88 condition-name;
VALUE IS
VALUES ARE literal-1

ITiROUGH
THRU

literal-2

, literal-3 j THROUGH 1 THRU literal-4

1-119

Data Division

GENERAL FORMAT FOR COMMUNICATION DESCRIPTION ENTRY

FORMAT 1:

CD cd-name ;

[initial"!

FOR INITIAL INPUT

[; SYMBOLIC QUEUE IS data-name-l]

SYtffiOLIC SUE-QUEUE- 1 IS data-name-2]

SYMBOLIC SUB-QUEUE-2 IS data-name-s]

SYMBOLIC SUB-QUEUE- 3 IS data-name-4]

MESSAGE DATE IS data-name-s]

MESSAGE TIME IS data-name-6]

SYMBOLIC SOURCE IS data-name-?]

TEXT LENGTH IS data-name-S] •

END KEY IS data-name-9]

STATUS KEY IS data-name- lo]

MESSAGE COUNT IS data-name- ll]^

[data-name-l, data-name-2, data-name-l l"]

FORMAT 2

CD cd-name ; FOR OUTPUT

[; DESTINATION COUNT IS data-name-l]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-s]

[; DESTINATION TABLE OCCURS integer-2 TIMES

[; INDEXED BY index-name-1 [, index-name-2] . .

[; ERROR KEY IS data-naroe-4]

SYMBOLIC DESTINATION IS data-name-5

1-120

Data Division

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORMAT 1

01 [data-name-1]

; LINE NUMBER IS integer-1 [oN NEXT PAGE]
PLUS integer-2

f integer- 3 ̂
; NEXT GROUP IS \ PLUS integer-4

NEXT PAGE

TYPE IS

data-naine-2 ,
FINAL

r REPORT HEADING]

|RH j

[PAGE HEADING]

f CONTROL HEADING

ICH
[DETAIL]
(DE J

f CONTROL FOOTING") (data-name- 3^

]CF

[page footing]
Iff 1

[report footings

FINAL

[; [USAGE is] DISPLAY ̂ .

FORKAT 2

level-number [data-name-l"J

LINE NUMBER IS t™"™-!^]
' I PLUS integer-2

^; [USAGE is] DISPLAY J

1-121

Data Division

GENERAL FORMAT FOR REPORT GROUP DESCRIPTION ENTRY

FORf^T 3:

level-number [data-name- l]

[; BLANK WHEN ZERO

[; GROUP INDICATE]

JUSTIFIED
JUST

RIGHT

; LINE NUMBER IS [I'^lT.^-^ [ON
 NEXT PAGe] ' -—. 1 PLUS integer-2

[; C0LU>1N NU>BER IS integer-s]

picture") PIC

■
J

IS character-strins

: SOURCE IS identifier-1

; VALUE IS literal

{5 .SUM identifier-2 [, identif ier-s] ...

j^UPON data-name-2 [, data-name-3] ... j

reset on data-name-4
FINAL

[; [usage is] display]

^

1-122

Procedure Division

GENERAL FORMAT FOR PROCEDURE DIVISION

F0IRMAT_1:

USING data-name-1 ^, data-name-2] • • • ̂
PROCEDURE DIVISION

DECLARATIVES .

^section-name SECTION [segment-number] . declarative-sentence

[paragraph-name. [sentence] ...]...] ...

END DECLARATIVES .1

|section-name SECTION [seg^ient-number] .

[paragraph-name. [sentence J... "]...!...

FORMAT 2:

PROCEDURE DIVISION [USING data-name-1 [, data- name-2] . . .

paragraph-name. [sentence] • • • { • • •

1-123

COBOL Verb Formats

GENERAL FORKiAT FOR VERBS

ACCEPT identifier [FROM mnemonic-name] (DATE^

ACCEPT identifier FROM J DAY i

[TIME \
ACCEPT cd-name MESSAGE COUNT

identif ier-1 ADD
literal-1

, identifier-2

, literal-2
TO identifier-ra [ROUNDED J

[, identifier-n [ROUNDED]J ... [; ON SIZE ERROR iinper ative-statementl

ADD identif ier-1

literal-1
identifier-2

literal-2
, identif ier-3l
, literal-3 J

GIVING identif ier-m [ROUNDED J [, identifier-n [ROUNDED] j ...

[; ON SIZE ERROR imperative-statement]

Ai^T^ (CORRESPONDING^ ^ . r . o rBnn7TT.r-nT
ADD -i QQp"-^ / identifier-1 TO identifxer-2 [^ROUNDED J

[; ON SIZE ERROR imperative-statement]

ALTER procedure-name- 1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] ...

[USING data-name-1 [, data-name-2 j **']
CALL identif ier-1

literal-1

[; ON OVERFLOW imperative-statement]

CANCEL identifier- 1

literal-1

CLOSE file-name- 1

, identifier-2

, literal-2

(reel'

'with no REIaJIND'

-

juNIT

FOR REMOVAL

WITH [miiMIM] \lock j

, file-name-2

C REEL
UNIT

WITH NO REWIND
FOR REMOVAL

(NO REWIND

[LOCK
CLOSE file-name- 1 [WITH LOCK] [, fiIe-name-2 [wiTH LOCK] j ..

1-124

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

COMPUTE identifier- 1 [ROUNDED] [, identifier-2 [ROUNDED]] ...

= arithmetic-expression I"; ON SIZE ERROR imperative-statement]

DELETE file-name RECORD [; INVALID KEY imperative-statement!

T^TCAnT,7 flNPUT [terminal]) , fidentifier-ll

^MMhL ̂ OUTPUT 7 cd-name WITH KEY ji^teral-l J

„^„T>T *v f identifier- 1) f, identif ler-z 1 rTTT.r>xT • 1
DISPLAY J . . , , ' , , o • • • UPON mnemonic-name I

 l^literal-1 J I, literal-2 j L

DIVIDE liiteral-l^""^] ̂^'^^ identifier-2 [ROUNDED]

^, identifier-3 [ROUNDED] j ... [; ON SIZE ERROR imperative-statement]

DIVIDE f^'^r'S^^^^"^] INTO GIVING identifier-3 FrOUNDEdI (^literal-1 J [^literal-2 J . L i

[, identifier-4 [ROUNDED]| ... [; ON SIZE ERROR imperative-statement]

DIVIDE (identifier-l| ("^^^^f ̂ ^^"^l GIVING identifier-3 [ROUND ED 1 [literal-l j — (literal-2 J L J

identifier-4 [ROUNDED "] j ... [; ON SIZE ERROR imperative-statement]

INTO [iiteral-2^~^] ̂ ^^^^^ identifier-3 [ROUND ED "]

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

DIVIDE (^^f f-^] BY f?-^^^*^"^f-2] GIVING identifier-3 f ROUNDED 1 \^literal-l J — \literal-2 j L J

DIVIDE identif ier-1
literal-1

REMAINDER
SR. identifier-4 [; ON SIZE ERROR imperative-statement]

f INPUT [TERMINAL]) , (identif ier-l)

[oUTPirr ̂ — ^^-^^"'^ ^ lliteral-l j

ENTER language-name [routine-name] .

EXIT [PROGRAM] .

GENERATE (data-name |) report-name J

GO TO [^procedure-name- 1 }

1-125

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

GO TO procedure-name- 1 [, procedure-name-2 ^ ... , procedure-name-

DEPENDING ON identifier

J ^ r statement- 1 ̂ j; ELSE statement-2 1
Lb_ condxtion; | NEXT SENTENCE j |; ELSE NEXT SENTENCE |

INITIATE report-name-1 [, report-name-2 "] ...

INSPECT identifier- 1 TALLYING

, identifier-2 FOR

"life

CHARACTERS
T

I AFTER j
INITIAL fidentif ier-A| /

Uiteral-2 j \

INSPECT identifier-1 REPLACING

(characters by |identifier-6] Ff before] [identifier-?]
 lliteral-A J [{AFTER j ̂̂ ^^^^^ lUteral-S]

'ALL ' LEADING

1
FIRST J

fidentlfier-5] fidentif ier-6)
lliteral-3 J — Uiteral-4 j

f BEFORE) ̂ .

{afteT

identifier-?]
llteral-5 J

INSPECT identifier-1 TALLYING

' , identifier-2 FOR INITIAL

{identif ler-4"l

literal-2

REPLACING

characters by { Identif ier-6] ff BEFORE \llteral-4 J [AFTER '

NITIAL {identifier
-?!

l^literal-5 J

^ IlIxdiNg] j, (identif ier-5] fidentif ier-6] f [BEFORE]
[fTrST"! 1 Uiteral-3 J — lliteral-4 J | AFTER J

INITIAL [identifier-?]] l.literal-5 jj

1-126

COBOL Vei'h Formats

GENERAL FORMAT FOR VERBS

MERGE file-name- 1 ON | DESCENDING^ data-name-l [, data-name-2]

f ASCENDING \ „^ , ̂ ' V a . /^

I DESCENDING j ™ data-name-
3 [, data-naine-4j

[collating SEQUENCE IS alphabet-name]

USING file-name- 2 J file-narae-3 [, flle-name-4] ...

OUTPUT PROCEDURE IS section-name- 1

GIVING file-name-5

f THROUGH

1 THRU
section-name-2

MOVE [literal^^^ ̂ } 12 identifier-2 [, identif ier-3] ...

f CORRESPONDING^ . MOVE

I CORR
J

identifier-1 TO identifier-2

MULTIPLY identifier-1

literal-1 BY identifier-2 [ROUNDED]

[, identif ier-3 |^
ROUNDED

lid
ent

MULTIPLY i r.
 (.liter

ifier-l]
al-1 J

... [; ON SIZE ERROR imperative-statement]

— {lite^al-2^~^ ' '^^^^^^ identif ier-3 [ROUNDED]

j", identif ier-A [ROUNDED] ... [; ON SIZE ERROR imperative-statement]

, file-name- 2

r

INPUT file-name- 1
REVERSED
WITH NO REWIND

REVERSED

WITH NO REWIND

OPEN A

OUTPUT file-name-3 [wiTH NO REWIND] [, file-name-4 [wiTH NO REWIND]'
I-O file-name-5 [, file-name-6] ...

EXTEND file-name- 7 [, f ile-name-8] ...

OPEN
fiNPUT file-name- 1 [, file-
\ OUTPUT file-name-3 [, fil(

•name-2] ...

 .e-name-4] • • • ̂ • • •
I-O file-name-5 [, file-name-6] ...

PERFORM procedure-name-1
THROUGH
THRU

pt;'tpt7ab^a a 1 fTHROUGHl
PERFORM procedure-name-1 | ̂ ̂̂ '^^ [

PERFORM procedure-name-1
("through'
THRU

procedure-name-2

procedure-name- 2

procedure-name-2

identifier-1

integer-1

TIMES

UNTIL condition- 1

1-127

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

PERFORM procedure-name- 1

f through"!
\THRU 1 P^°'^^^'^

r®"^^°i®~2

VARYING

BY

.J ̂ .r. fidentif ier-3
xdentxfier-2^ ̂ ^^^ index-name-2 index-name- 1) -, • ̂ i i

^ |^literal~l

AFTER

BY

AFTER

BY

identif ier-4
literal-3 .

fidentlf ier-5

\ind ex-name- 3

identif ier-?!
literal-4 j

j identif ier-8

V.ind ex-name- 5

(identifier- lO"] tliteral-6 J

UNTIL condition-1

Tidentif ier-6 j
FROM A index-name-4

I literal-3

UNTIL condition-2

(identif ier-9^ FROM -(index-name- 6 1

(_literal-5

UNTIL condition-3

READ file-name RECORD [iNTO identifier] [; AT END imperative-statement]

READ filfe-name [neXt] RECORD [INTO identifier]

1^; AT END imperative-statement"]

READ file-name RECORD [INTO identifier] [; INVALID KEY imperative-statement]

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

INVALID KEY imperative-statement]

INTO identif ier-1 [; NO DATA imperative-statement]

RELEASE record-name [FROM identifier]

RETURN file-name RECORD [INTO identifier] ; AT END imperative-statement

REWRITE record-name [FROM identifier]

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

,] MESSAGE
RECEIVE cd-name ■< ■ — ii<am ̂ SEGMENT

1-128

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

SEARCH identifier- 1 VARYING f identif ier-2

\index-narae-l \ j^; AT END imperative-statement- 1]

1 (imperative-statement-2)
WHEN condxtxon-1 ̂ ^.^XT SENTENCE]

\7HEN condition-2

\

!imperative-statement-3 NEXT SENTENCE

SEARCH ALL identifier-1 AT END imperative-statement- 1]

(identif ier-3

; WHEN
(data-name- 1 EQUAL TO) J]_iteral-1
^ I. J l.arithmetic-expression-1.
condition-name- 1

AND (, , , fiS EQUAL to] i I*^^^^
"^"^^- J data-name-2 | 3^ | ■< literal-2

[arithmetic-
(condition-name-2

(identif ier-4

expression-2^

imperative-statement-2' NEXT SENTENCE
J

SEND cd-name FROM identifier-1

C WITH identifier-2"^
SEND cd-name FfrOM identif ier-l]] ̂™ ~ L J 1 WITH EMI

BEFORE

AFTER
ADVANCING

\^WITH EGI

tifier-3"] f

LINE
LINES

mnemonic-name")

SET identifier-1 [, identif ier-2]

index-name- 1 ̂ , index-name-2]

SET index-name-4 [, index-name-S^

^ J

ITide
ntif i

er-3^

TO \ index-nam
e-

3 [

[integer-

1 J

fUP BY "I fidentifier-A
I DOWN BY

\integer-2

1-129

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

^r^^rr^ ^.^ 1 r ASCENDING 1

SORT file-name- 1 ON ̂ pEscENDING

(ascending 1
1 descending

I KEY data-name- 1 [, data-name-2]

ON
I KEY data-name-3 [, data-name-4]

[collating sequence is alphabet-name]

INPUT PROCEDURE IS section-name- 1
THROUGH
THRU

j se
ct

ion-name-2

USING file-name-2 [, file-name- 3] ...

OUTPUT PROCEDURE IS sect ion-name- 3
f THROUGH 1

I^THRU J s
ectxon-name-4

 GIVING file-name-4

START file-name KEY

(IS EQUAL TO

IS =
IS GREATER THAN

\ IS > IS NOT LESS THAN

IS NOT <

>■ data-name

[; INVALID KEY imperative-statement"]

(run STOP

STRING

{.literal

identif ier-1

literal-1

fidentif ier-4

' \literal-4

, identifier-2

, literal-2

, identifier-5

, literal-5

(identifier-3

DELIMITED BY ̂ literal-3

[SIZE

identif ier-6,
DELIMITED BY { literal-6

SIZE

INTO identifier-7 [wiTH POINTER identif ier-s]

[; ON OVERFLOW imperative-statement]

SUBTRACT identif ier-1

literal-1
, identifier-2
5 literal-2

FROM identifier-m ^ ROUNDEpJ

[, identifier-n [R0UNDED]J ... [; ON SJZE ERROR imperative-statement]

1-130

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

I

SUBTRACT (f^f'"^?"-^] [' ̂̂ r^^^'f-^l ... FROM (identifier- \literal-l J literal-2 J l^literal-m

GIVING identifier-n [ROUNDED J identifier-o [ROUND ED]j ...

^; ON SIZE ERROR imperative-statement]

SUBTRACT j^co^^^^^^^"^^^ identif ier-1 FROM identif ier-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

SUPPRESS PRINTING ,

TERMINATE report-name- 1 [* , report-name-2] ...

UNSTRING identifier-1

DELIMITED BY [ALl] (identif ier-2] f ̂ r ̂ j^^-. f identif ier-r 3] L J [literal-1 J — L J j_literal-2 J

INTO identif ier-4 [, DELIMITER IN identif ier-S] [, COUNT IN identif ier-6]

[, identif ier-7 [, DELIMITER IN identif ier-s] [, COUNT IN identif ier-9]]

[with pointer identif ier-io] [TALLYING IN identif ier-ll]

[; ON OVERFLOW imperative-statement]

USE AFTER STANDARD J|^^^|^^i^[PROCEDURE ON -^OUTPUT

\ERROR] —
EXTEND

^file-name-1 [, f ile-name-2] ..
INPUT

USE AFTER STANDARD J^??|?^^l PROCEDURE ON \^^,

file-name-1 [, file-name-2] ..

ERROR OUTPUT

I-O

USE BEFORE REPORTING identifier.

1-131

COBOL Verb Formats

GENERAL FORMAT FOR VERBS

(cd-name-1

I [ALL REFERENCES OF] identifier-1
USE FOR DEBUGGING ON \ file-name- 1

procedure-name- 1
ALL PROCEDURES

cd-name-2

[ALL REFERENCES OF] identifier-2

, file-name- 2

procedure-name- 2
ALL PROCEDURES

WRITE record-name I" FROM identifier- 1]

{iifl
 ADVANCING

1

"line f

LINES]

f end-of-page")
' |eop j

fidentif ier-2
\integer

fmnemonic-name""

|PAGE imperative-statement

WRITE record-name [FROM identifier] [; INVALID KEY imperative-state
ment]

1-132

Condition Formats

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:

identif ier-1

literal-1

arithmetic-express ion- 1
index-name- 1

[is [NOT] GREATER THAN' IS [NOT] LESS THAN
IS [NOT] EQUAL TO

IS [NOT] >

IS [NOT] <

IS [NOT] =

identif ier-2

literal-2
arithraetic-expression-2 j

index-name-2

CLASS CONDITION

identifier IS [NOT]
(NUMERIC

1 ALPHABETIC

SIGN CONDITION:

f POSITIVE^ arithmetic-express
ion is [NOT] \ NEGATIVE

1 ZERO

CONDITION-NAME CONDITION:

condition-name

SWITCH-STATUS CONDITION

condition-name

NEGATED SIMPLE CONDITION

NOT simple-condition

COMBINED CONDITION:

condition | "^^^ ̂ condition

ABBREVIATED COMBINED RELATION CONDITION:

relation-condition

|^[ol^| [NOT] [relationa
l-operator] object

1-133

Miscellaneous Formats

MISCELLANEOUS FORMATS

QUALIFICATION:

data-name- 1
condition- name

paragraph-name

OF — y data-name- 2

OF
section-name

text- name
OF

IN

IN

library- name

SUBSCRIPTING:

I data -name j.
(condition- name J (subscript-1 [, svibscript-2 [, subscript-S]])

INDEXING: ,

jdata-name
Lcondit ion- name

index-name-1 [{±} literal-23i

literal- 1

r index-name- 2 [{±} literal- 4]

* l^literal-3

IDENTIFIER: FORMAT 1

data-name-1

/of
data-name- 2

[, subscript-3]]) j

findex-name-S [{±} literal-6j|

' jliteral-5

(subscript-1 [, subscript-2

IDENTIFIER: FORMAT 2

data- name- 1

'of")

IN ̂

data-name- 2

-
1

(i

(index- name- 2 [{±} lit eral-4]

literal~3

index-name-1 [{±} literal- 2]

^literal- 1

findex-name-S [{±} literal-6]

{ literal-5

1-134

COPY Statement

GENERAL FORMAT FOR COPY STATEMENT

COPY text-name

l^PLACING

library-name

==pseudo-text- 1==^
identifier-1

literal-1

word-1

BY

{==ps
eudo-

 text-2-

identif

ier-2

literal
-

2

word- 2

1-135

Nucleus - Introduction

1. INTRODUCTION TO THE NUCLEUS

1.1 FUNCTION

The Nucleus provides a basic language capability for the internal process-
ing of data within the basic structure of the four divisions of a program.

1.2 LEVEL CHARACTERISTICS

Nucleus Level 1 does not provide full COBOL facilities for qualification,

punctuation characters, data-narae formation, connectives, and figurative
constants. Within the Procedure Division, the Nucleus Level 1 provides limit-

ed capabilities for the ACCEPT, ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE,
MULTIPLY, PERFORM, and SUBTRACT statements and full capabilities for the ENTER,
EXIT, GO, and STOP statements. ^

Nucleus Level 2 provides full facilities for qualification, punctuation

characters, data-name formation, connectives, and figurative constants. With-
in the Procedure Division, the Nucleus Level 2 provides full capabilities for

the ACCEPT, ADD, ALTER, DIVIDE, DISPLAY, IF, INSPECT, MOVE, MULTIPLY, PERFORM,
and SUBTRACT statements.

1.3 LEVEL RESTRICTIONS ON OVERALL LANGUAGE

1.3.1 Format Notation

The separators, comma and semicolon, are not included in Level 1. The
comma and semicolon are not boxed within the general formats of this document

included in Level 2.
in order to simplify the formats. The separators, comma and semicolon, are

1.3.2 Name Characteristics

All data-names must begin with an alphabetic character in Level 1. Quali-

fication is not included, therefore, all data-names, paragraph-names, and
text-names must be unique in Level 1. | In Level 2 data-names need not begin
with an alphabetic character; the alphabetic characters may be positioned any-

where within the data-name. Qualification is permitted in Level 2; thus all

data-names, condition-names, paragraph-names, and text-names need not be unique.

1.3.3 Figurative Constants

The only figurative constants that may be used in Level 1 are: ZERO, SPACE.

HIGH-VALUE, LOW- VALUE, and QUOTE. [In Level 2, all the following figurative
constants may be used: ZERO, ZEROS, ZEROES, SPACE, SPACES , HIGH-VALUE ,

HIGH-VALUES, LOW-VALUE, LOW- VALUES , QUOTE, QUOTES, and ALL literal.

1.3.4 Reference Format

In Level 1 a word or numeric literal cannot be broken in such a \<!ay that

part of it appears on a continuation line. | In Level 2 a word or numeric

literal can be broken in such a way that part of it appears qji" a continuation line .

II-l "

Nucleus - Identifioation Division

2. IDENTIFICATION DIVISION IN THE NUCLEUS

2.1 GENERAL DESCRIPTION

The Identification Division must be included in every COBOL source program.
This division identifies the source program and the resultant output listing.
In addition, the user may include the date the program is written and such
other information as desired under the paragraphs in the general format shown
below.

2.2 ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,

which is the PROGRAM-ID paragraph. The other paragraphs are optional and may

be included in this division at the user's choice, in the order of presenta-
tion shown by the general format below.

2.2.1 Structure

The following is the general format of the paragraphs in the Identification

Division and it defines the order of presentation in the source program.

Paragraphs 2.3 and 2.4 define the PROGRAM- ID paragraph and the DATE-COMPILED
paragraph. While the other paragraphs are not defined, each general format is
formed in the same manner.

2,2,1.1 General Format

IDENTIFICATION DIVISION.

PROGRAM- ID. program-name.

[author. [comment-entry] ...]

[installation. [comment- en try] . . .]

[date-written. [comment-entry] ...]

date-compiled. [comment-entry] ...J

[SECURITY. [comment-entry] ...]

2.2.1.2 Syntax Rules

(1) The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

(2) The comment-entry may be any combination of the .characters from the

computer's character set. The continuation of the comment-entry by the use
of the hyphen in the indicator area is not permitted; however, the comment-
entry may be contained on one or more lines.

II-2

Nualeus - PROGRAM- ID

2.3 THE PROGRAM-ID PARAGRAPH

2.3.1 Function

The PROGRAM-ID paragraph gives the name by which a program is identified.

2.3.2 General Format

PROGRAM- ID. program-name.

2.3.3 Syntax Rules

(1) Tlie program-name must conform to the rules for forniation of a
user-defined word.

2.3.4 General Rules

(1) The PROGRAM- ID paragraph must contain the name of the program and
must be present in every program,

(2) The program-name identifies the source program and all listings
pertaining to a particular program.

II-3

Nuoleus - DATE-COMPILED

2.4 THE DATE-COMPILED PARAGRAPH

2.4.1 Function

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

2.4.2 General Format

DATE-COMPILED, [comment-entry] ...

2.4.3 Syntax Rules

(1) The comment-entry may be any combination of the characters from the

computer's character set. The continuation of the comment-entry by the use
of the hyphen in the indicator area is not permitted; however, the comment-
entry may be contained on one or more lines.

I 2.4.4 General Rules

(1) The paragraph-name DATE-COMPILED causes the current date to be insert-
ed during program compilation. If a DATE-COMPILED paragraph is present, it is

replaced during compilation with a paragraph of the form:

DATE-COMPILED. current date.

II-4

Nucleus - SpURCE-COmTER

3. ENVIRONMENT DIVISION IN THE NUCLEUS

3.1 CONFIGURATION SECTION

3.1.1 The SOURCE-COMPUTER Paragraph

3.1.1.1 Function

The SOURCE-COMPUTER paragraph identifies the computer upon which the
program is to be compiled.

3.1.1.2 General Format

SOURCE-COMPUTER. computer-name.

3.1.1.3 Syntax Rules |

(1) Computer-name is a system-name.

3.1.1.4 General Rules

(1) Fixed computer-names are assigned by the individual implementor .

(2) The computer-name may provide a means for identifying equipment con-
figuration, in which case the computer-name and its implied configuration are

specified by each implementor.

II-5

Nucleus - OBJECT-COMPUTER

3.1.2 The OBJECT-COMPUTER Paragraph
I

3.1.2.1 Function

The OBJECT-COMPUTER paragraph identifies the computer on which the program
is to be executed.

3.1.2.2 General Format

OBJECT-COMPUTER. computer-name , MEMORY SIZE integer i
WORDS

CHARACTERS
MODULES

[, PROGRAM COLLATING SEQUENCE IS alphabet-name] .

3.1.2.3 Syntax Rul es |

(1) Computer-name is a system-name.

3.1.2.4 General Rules

(1) The computer-name may provide a means for identifying equipment config-
uration, in which case the computer-name and its implied configuration are

specified by each implementor. The configuration definition contains specific
information concerning the memory size.

The implementor defines what is to be done if the subset specified by

the user is less than the minimum configuration required for running the

object program.

(2) If the PROGRAM COLLATING SEQUENCE clause is specified, the collating

sequence associated with alphabet-name is used to determine the truth value of
any nonnumeric comparisons:

a. Explicitly specified in relation conditions. (See page 11-41,
Relation Condition.)

b. Explicitly specified in condition-name conditions. (See page
11-44, Condition-Name Condition (Conditional Variable).)

c. Implicitly specified by the presence of a CONTROL clause in a

report description entry. (See page VIII-28, The CONTROL Clause.)

(3) If the PROGRAM COLLATING SEQUENCE clause is not specified, the native
collating sequence is used.

(4) If the PROGRAM COLLATING SEQUENCE clause is specified, the program

collating sequence is the collating sequence associated with the alphabet-name
specified in that clause.

(5) The PROGRAM COLLATING SEQUENCE clause is also applied to any nonnumeric
merge or sort keys unless the COLLATING SEQUENCE phrase of the respective

MERGE or SORT statement is specified. (See page VII-8, The MERGE Statement,
and page VII-14, The SORT Statement.)

II-6

Nuoleus - OBJECT -COMPUTER

(6) The PROGRAM COLLATING SEQUENCE clause applies only to the program
 in

which it is specified.

II-7

Nucleus - SPECIAL-NAMES

3.1.3 The SPECIAL-NAMES Paragraph

3.1.3.1 Function

The SPECIAL-NAMES paragraph provides a means of relating implementor-names
to user-specified mnemonic-names and of relating alphabet-names to character
sets and/or collating sequences.

3.1.3.2 General Format

SPECIAL-NAMES . [, implementor-name

IS mnemonic-name [, "oN STATUS IS condition-name-1 [, OFF STATUS IS condition-name- 2]

IS mnemonic-name [, OFF STATUS IS condition-name-2 [, ON STATUS IS condition-name- ijj <.. ' ,

ON STATUS IS condition-name-1 [, OFF STATUS I£ condition-name-2]

OFF STATUS IS conditicn-name-2 [, ON STATUS IS- condition-name-1]

^ STANDARD- 1
NATIVE

alphabet-name IS \ implementor-name

literal-1 literal-2
J THROUGH

I THRU
ALSO literal-3 [, ALSO literal-4]. . .

THROUGH"^ literal-5
THRU literal-6

ALSO literal-7 [, ALSO literal-s] . . .

, CURRENCY SIGN IS_ literal-9]

[, DECIMAL-POINT IS COMMA j .

3.1.3.3 Syntax Rules

(1) The literals specified in the literal phrase of the alphabet-name
clause :

a. If numeric, must be unsigned integers and must have a value within

the range of one (1) through the maximum number of characters in the native
character set.

b. If nonnumeric and associated with a THROUGH or ALSO phrase, must

each be one character in length.

(2) If the literal phrase of the alphabet-name clause is specified a
given character must not be specified more than once in an alphabet-name
clause.

(3) The words THRU and THROUGH are equivalent.

II-8

Nucleus - SPECIAL-NAMES

(4) In repetition, a comma may be used before implementor-narae.

3.1.3.4 General Rules

(1) If the implementor-name is not a switch, the associated mnemonic-name
may be used in the ACCEPT, DISPLAY, SEND, and WRITE statement.

(2) If the implementor-name is a switch, at least one condition-name must
be associated with it. The status of the switch is specified by condition-

names and interrogated by testing the condition-names (see page 11-44,
Switch-Status Condition) .

(3) The alphabet-name clause provides a means for relating a name to a

specified character code set and/or collating sequence. When alphabet-name is
referenced in the PROGRAM COLLATING SEQUENCE clause (see page II-6, The
OBJECT-COMPUTER Paragraph) or the COLLATING SEQUENCE phrase of a SORT or MERGE

statement (see page VII-8, The MERGE Statement, and page VII-14, The SORT
Statement) , the alphabet-name clause specifies a collating sequence. When
alphabet-name is referenced in a CODE-SET clause in a file description entry
(see page IV-IO, The File Description - Complete Entry Skeleton), the
alphabet-name clause specifies a character code set.

a. If the STANDARD-1 phrase is specified, the character code set or
collating sequence identified is that defined in American National Standard

Code for Information Interchange, X3. 4-1968. Each character of the standard
character set is associated with its corresponding character of the native

character set. The implementor defines the correspondence between the char-
acters of the standard character set and the characters of the native charac-

ter set for which there is no correspondence otherwise specified.

b. If the NATIVE phrase is specified, the native character code set

or native collating sequence is used.

c. If the implementor-name phrase is specified, the character code
set or collating sequence identified is that defined by the implementor. The

implementor also defines the correspondence between characters of the char-
acter code set specified by implementor-name and the characters of the native

character code set.

d. If the literal phrase is specified, the alphabet-name may not be
referenced in a CODE-SET clause (see IV-12, The CODE-SET Clause). Tlie collat-

ing sequence identified is that defined according to the following rules:

Rule 1: The value of each literal specifies:

1. The ordinal number of a character within the native

character set, if the literal is numeric. This value must not exceed the
value which represents the number of characters in the native character set.

2. The actual character within the native character set,
if the literal is nonnumeric. If the value of the nonnumeric literal contains

multiple characters, each character in the literal, starting with the leftmost
character, is assigned successive ascending positions in the collating sequence
being specified.

II-9

Nucleus - SPECIAL-NAMES

Rule 2: The order in which the literals appear in the alphabet-
name clause specifies, in ascending sequence, the ordinal number of the
character within the collating sequence being specified.

Rule 3: Any characters within the native collating sequence,
which are not explicitly specified in the literal phrase, assume a position,
in the collating sequence being specified, greater than any of the explicitly
specified characters. The relative order within the set of these unspecified
characters is unchanged from the native collating sequence.

Rule 4: If the THROUGH phrase is specified, the set of contiguous
characters in the native character set beginning with the character specified

by the value of literal-1, and ending with the character specified by the
value of literal-2, is assigned a successive ascending position in the collat-

ing sequence being specified. In addition, the set of contiguous characters
specified by a given THROUGH phrase may specify characters of the native
character set in either ascending or descending sequence.

Rule 5: If the ALSO phrase is specified, the characters of the

native character set specified by the value of literal-1, literal-3, literal-4,
. . . , are assigned to the same position in the collating sequence being .
specified.

(4) The character that has the highest ordinal position in the program
collating sequence specified is associated with the figurative constant

HIGH-VALUE. If more than one character has the highest position in the
program collating sequence, the last character specified is associated with

the figurative constant HIGH-VALUE.

(5) The character that has the lowest ordinal position in the program
collating sequence specified is associated with the figurative constant

LOW-VALUE. If more than one character has the lowest position in the pro'gram
collating sequence, the first character specified is associated with the

figurative constant LOW- VALUE.

(6) The literal which appears in the CURRENCY SIGN IS literal clause is
used in the PICTURE clause to represent the currency symbol. The literal
is limited to a single character and must not be one of the following
characters .

a. digits 0 thru 9;

b. alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the

space;'

c. special characters ' + ' , '(', ')', ,
'/', '='.

If this clause is not present, only the currency sign is used in the
PICTURE clause.

(7) The clause DECIMAL-POINT IS COMMA means that the function of comma and

period are exchanged in the character-string of the PICTURE clause and in
numeric literals.

11-10

Nualeus - Working- Storage Section

4. DATA DIVISION IN THE NUCLEUS

4.1 WORKING-STORAGE SECTION

The Working-Storage Section is composed of the section header, followed by
data description entries for noncontiguous data items and/or record description

entries. Each Working-Storage Section record name and noncontiguous item name

must be unique since it cannot be qualified. Subordinate data-names need not
be unique if they can be made unique by qualification.

4.1.1 Noncontiguous Working-Storage

Items and constants in Working-Storage which bear no hierarchical relation-
ship to one another need not be grouped into records, provided they do not

need to be further subdivided. Instead, they are classified and defined as

noncontiguous elementary items. Each of these items is defined in a separate

data description entry which begins with the special level-number, 77.

The following data clauses are required in each data description entry:

a. level-number 77

b. data- name
c. the PICTURE clause or the USAGE IS INDEX clause.

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

4.1.2 Working-Storage Records

Data elements and constants in Working-Storage which bear a definite hier-
archic relationship to one another must be grouped into records according to

the rules for formation of record descriptions. All clauses which are used
in record descriptions in the File Section can be used in record descriptions

dn the Working-Storage Section.

4.1.3 Initial Values

The initial value of any item in the Working-Storage Section except an
index data item is specified by using the VALUE clause with the data item.
The initial value of any index data item is unpredictable.

11-11

Nucleus - Data Description

4.2 THE DATA DESCRIPTION - COMPLETE ENTRY SKELETON

4.2.1 Function

A data description entry specifies the characteristics of a particular itefn
of data.

4.2.2 General Format

Format 1

. - , r data-name- 11
level-nuuter | jii_i_er . j

ft REDEFINES data-name

-2]

(picture'] jpic j

[USAGE is] KOMP

IS character-string

'computational'

DISPLAY

[; [sign is] {tiling ' [-^^^^^^ CHARACTER] L I 3

synchronized!
SYNC

"
1

LEFT

RIGHT

BLANK WHEN ZERO
1

VALUE IS literal] .

Format 2

66 data-name-1; RENAMES data-name- 2
[THROUGH 1

[THRU

data-name- 3

Format 3

88 condition-name;

literal-3

f VALUE IS
VALUES ARE
1

(through^

I THRU

literal-1

teral-4 J

THROUGH
THRU

literal-2

II-I2

Nucleus - Data Description

4. 2. 3 Syntax Rules

(1) In Level 1, the level-number in Format 1 may be any number from 01-10
or 77. In Level 2, the level-number in Format 1 may be any number from 01-49
or 77.

(2) The clauses may be written in any order with two exceptions: the data-
name-1 or FILLER clause must immediately follow the level-number; the REDEFINES
clause, when used, must immediately follow the data-name-1 clause.

(3) The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

(4) The words THRU and THROUGH are equivalent.

4.2.4 General Rules

(1) The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK mm ZERO,

must not be specified except for an elementary data item.

(2) Format 3 is used for each condition-name. Each condition-name requires:
a separate entry with level-number 88. Format 3 contains the name of the
condition and the value, values, or range of values associated with the condi-

tion-name. The condition-name entries for a particular conditional variable
must follow the entry describing the item with which the condition-name is

associated. A condition-name can be associated with any data description
entry which contains a level-nuniber except the following:

a. Another condition-name.

b. A level 66 item.

c. A group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED or USAGE (other than USAGE IS DISPLAY) .

 d. An index data item (See page III-5, The USAGE IS INDEX Clause).

11-13

Nucleus - BLANK WHEN ZKRO

4.3 THE BLANK WHEN ZERO CLAUSE

4.3.1 Function

The BLANK WHEN ZERO clause permits the blanking of an item when its value
is zero.

4.3.2 General Format

BLANK WHEN ZERO

4.3.3 Syntax Rules

(1) The BLANK WHEN ZERO clause can be used only for an elementary item

whose PICTURE is specified as numeric or numeric edited. (See page 11-18,
The PICTURE Clause)

4.3.4 General Rules

(1) When the BLANK WHEN ZERO clause is used, the item will contain nothin
but spaces if the value of the item is zero.

(2) When the BLANK WHEN ZERO clause is used for an item whose PICTURE is

numeric, the category of the item is considered to be numeric edited.

11-14

Nucleus - Data-Name

4.4 THE DATA-NAME OR FILLER CLAUSE

4.4.1 Function '

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

4.4.2 General Format

(data-name I FILLER J

4.4.3 Syntax Rules '

(1) In the File, Working-Storage, Communication and Linkage Sections, a
data-name or the key word FILLER must be the first word following the level-
number in each, data description entry.

4.4.4 General Rules

(1) The key word FILLER may be used to name an elementary item in a record,
Under no circumstances can a FILLER item be referred to explicitly. | However,
the key word FILLER may be used as a conditional variable because such use
does not require explicit reference to the FILLER item, but to its value.

11-15

Nucleus - JUSTIFIED

4.5 THE JUSTIFIED CLAUSE

4.5.1 Function

The JUSTIFIED clatise specifies non-standard positioning of data within a
receiving data item.

4.5.2 General Format

[JUST j

4.5.3 Syntax Rules

(1) The JUSTIFIED clause can be specified only at the elementary item
level .

(2) JUST is an abbreviation for JUSTIFIED.

(3) The JUSTIFIED clause cannot be specified for any data item described
as numeric or for which editing is specified.

4.5.4 General Rules

(1) When a receiving data item is described with the JUSTIFIED clause and
the sending data item is larger than the receiving data item, the leftmost
characters are truncated. When the receiving data item is described with the

JUSTIFIED clause and it is larger than the sending data item, the data is
aligned at the rightmost character position in the data item with space fill
for the leftmost character positions.

(2) When the JUSTIFIED clause is omitted, the standard rules for aligning

data within an elementary item apply. (See page 1-86, Standard Alignment
Rules .)

II-I6

Nucleus - Level-Number

4.6 LEVEL-NUMBER

4.6.1 Function

The level-number shows the hierarchy of data within a logical record. In
addition, it is used to identify entries for working storage items, linkage

items , 1 condition-names , and the RENAMES clause.

4.6.2 General Format

level-number

4.6.3 Syntax Rules

(1) A level-number is required as the first element in each data descrip-
tion entry. j

(2) Data description entries subordinate to an FD, SD or CD entry must

have level-numbers with the values 01 thru 10 in Level 1;| 01-49, 66 or 88 in

Level 2. | (See page IV- 10 for FD, page VII-5 for SD, and page XIII-3 for CD,)

(3) Data description entries subordinate to an RD entry must have level-
numbers with the value 01 thru 10 in Level 1;1.01 thru 49 in Level 2.| (See

page VIII~4 for RD.)

(4) Data description entries in the Working-Storage Section and Linkage
Section must have level-numbers with the values 01-10 or 77 in Level 1 ; | 01-49 ,
66, 77 or 88 in Level 2.

4.6.4 General Rules

(1) The level-number 01 identifies the first entry in each record

description or a report group. (See page VIII-6, The Report Group Description.)

(2) Special level-numbers have been assigned to certain entries where
there is no real concept of level:

a. Level-number 77 is assigned to identify noncontiguous working
storage data items, noncontiguous linkage data items, and can be used only

as described by Format 1 of the data description skeleton. (See page 11-12,
The Data Description - Complete Entry Skeleton.)

b. Level-number 66 is assigned to identify REN.^J-1ES entries and can be
used only as described in Format 2 of the data description skeleton. (See

page 11-12, The Data Description - Complete Entry Skeleton.)

c> Level-number 88 is assigned to entries which define condition-
names associated with a conditional variable and can be used only as described

in Format 3 of the data description skeleton. (See page 11-12, The Data

Description - Complete Entry Skeleton.)

(3) Multiple level 01 entries subordinate to any given level indicator,
other than RD , represent implicit redefinitions of the same area.

11-17

Nucleus - PICTURE

4.7 THE PICTURE CLAUSE \

4.7.1 Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

4.7.2 General Format

IS character-string

4.7.3 Syntax Rules

(1) A PICTURE clause can be specified only at the elementary item level.

(2) A character-string consists of certain allowable combinations of

characters in the COBOL character set used as symbols. The allowable combina-
tions determine the category of the elementary item.

(3) The maximum number of characters allowed in the character-? tring is 30.

(A) The PICTURE clause must be specified for every elementary item except
an index data item, in which case use of this clause is prohibited.

(5) PIC is an abbreviation for PICTURE.

(6) The asterisk when used as the zero suppression symbol and the clause
BLANK WHEN ZERO may not appear in the same entry.

407.4 General Rules

(1) There are five categories of data that can be described with a PICTURE

clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
edited.

(2) To define an item as alphabetic:

a. Its PICTURE character-string can only contain the symbols 'A', 'B' ;
and

b. Its contents when represented in standard data format must be any

combination of the twenty-six (26) letters of the Roman alphabet and the space
from the COBOL character set.

(3) To define an item as numeric:

a. Its PICTURE character-string can only contain the symbols '9', 'P',
'S', and 'V'. The number of digit positions that can be described by the
PICTURE character-string must range from 1 to 18 inclusive; and

b. If unsigned, its contents when represented in standard data format

must be a combination of the Arabic numerals '0', '1', '2', '3', '4', '5', '6',

11-18

Nucleus - PICTURE

'7', '8', and '9'; if signed, the item may also contain a '+' , or other
representation of an operational sign. (See page 11-31, The SIGN Clause.)

(4) To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain combinations

of the symbols 'A', 'X', '9', and the item is treated as if the character-

string contained all X's. A PICTURE character-string which contains all A's
or all 9's does not define an alphanumeric item; and

b. Its contents when represented in standard data format, are allow-

able characters in the computer's character set.

(5) To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain combinations

of the following symbols: 'A', 'X', '9', 'B', '0', and '/'; and

1) The character-string must contain at least one 'B' and at
least one 'X' or at least one '0' (zero) and at least one 'X' or at least one

'/' (stroke) and at least one 'X'; or

2) The character-string must contain at least one '0' (zero) and
at least one 'A' or at least one */' (stroke) and at least one 'A'; and

b. The contents when represented in standard data format are allow-

able characters in the computer's character set.

(6) To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain combinations

of the symbols 'B', '/', 'P', 'V, 'Z', '0', '9', ',', '.', '*', ' + ' , '-',
'CR' , 'DB' , and the currency symbol. The allowable combinations are determined
from the order of precedence of symbols and the editing rules; and

1) The number of digit positions that can be represented in the

PICTURE character-string must range from 1 to 18 inclusive; and

2) The character-string must contain at least one '0', 'B', '/',
'Z', '+', '-', 'CR', 'DB', or currency symbol.

b. The contents of the character positions of these symbols that are
allowed to represent a digit in standard data format, must be one of the
numerals .

(7) The size of an elementary item, where size means the number of char-
cter positions occupied by the elementary item in standard data format, is

- -pd ̂ ^-^ the numbe-- of allowable symbols that represent character posi-

tions. An integer which is enclosed in parentheses following the symbols 'A' ,
',', 'X', '9', 'P', 'Z', 'B', '/', '0', '+', •-', or the currency symbol
indicates the number of consecutive occurrences of the symbol. Note that the

followiag symbols may appear only once in a given PICTURE: 'S', 'V', '.',
'CR' , and 'DB' .

11-19

Nualeus - PICTURE

(8) The functions of the symbols used to describe an elementary item are
explained as follows:

A Each 'A' in the character-string represents a character position ,
which can contain only a letter of the alphabet or a space.

B Each 'B' in the character-string represents a character position
into which the space character will be inserted.

P Each 'P' indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when the point is not with-

in the number that appears in the data item. The scaling position character

'P* is not counted in the size of the data item. Scaling position characters
are counted in determining the maximum number of digit positions (18) in numer-

ic edited items or numeric items. The scaling position character 'P' can

appear only to the left or right as a continuous string of 'P's within a
PICTURE description; since the scaling position character 'P' implies an
assumed decimal point (to the left of 'P's if 'P's are leftmost PICTURE char-

acters and to the right if 'P's are rightmost PICTURE characters), the assumed
decimal point symbol 'V is redundant as either the leftmost or rightmost

character within such a PICTURE description. The character 'P' and the inser-
tion character '.' (period) cannot both occur in the same PICTURE character-

string. If, in any operation involving conversion of data from one form of
internal representation to another, the data item being converted is described

with the PICTURE character 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size of the data item is consid-

ered to include the digit positions so described;

S The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmost character in the PICTURE.

The 'S' is not counted in determining the size (in terms of standard data
format characters) of the elementary item unless the entry is subject to a
SIGN clause which specifies the optional SEPARATE CHARACTER phrase. (See page

11-31, The SIGN Clause.)

V The 'V' is used in a character-string to indicate the location of
the assumed decimal point and may only appear once in a character-string. The

'V does not represent a character position and therefore is not counted in
the size of the elementary item. When the assumed decimal point is to the

right of the rightmost symbol in the string the 'V' is redundant.

X Each 'X' in the character-string is used to represent a character

position which contains any allowable character from the computer's character
set .

Z Each 'Z' in a character-string may only be used to represent the
leftmost leading numeric character positions which will be replaced by a space

character when the contents of that character position is zero. Each 'Z' is
counted in the size of the item.

9 Each '9' in the character-string represents a character position
which contains a numeral and is counted in the size of the item.

11-20

Nucleus - PICTURE

0 Each '0' (zero) in the character-string represents a character

position into which the numeral zero will be inserted. The '0' is counted
in the size of the item.

/ Each '/' (stroke) in the character-string represents a character
position into which the stroke character will be inserted. The is counted
in the size of the item.

, Each ' , ' (comma) in the character-string represents a character
position into which the character will be inserted. This character posi-

tion is counted in the size of the item. The insertion character must not

be the last character, in the PICTURE character-string.

When the character ' . ' (period) appears in the character-string it
is an editing symbol which represents the decimal point for alignment purposes
and in addition, represents a character position into which the character

will be inserted. The character '.' is counted in the size of the item. For
a given program the functions of the period and comma are exchanged if the

clause DECIMAL-POINT IS COMl'lA is stated in the SPECIAL-NAMES paragraph. In
this exchange the rules for the period apply to the comma and the rules for
the comma apply to the period wherever they appear in a PICTURE clause. The

insertion character ' . ' must not be the last character in the PICTURE

character-string.

+, CR, DB These symbols are used as editing sign control symbols.
When used, they represent the character position into which the editing sign
control symbol will be placed. The symbols are mutually exclusive in any one

character-string and each character used in the symbol is counted in deter-
mining the size of the data item.

* Each (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed when the
contents of that position is zero. Each is counted in the size of the
item.

cs The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency symbol in

a character-string is represented by either the currency sign or by the single
character specified in the CURRENCY SIGN clause in the SPECIAL-NAMES paragraph.
The currency symbol is counted in the size of the item.

4.7.5 Editing Rules

(!)• There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are four
types of insertion editing available. They are:

a. Simple insertion
b. Special insertion
c. Fixed insertion

d. Floating insertion

11-21

Nucleus - PICTURE

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces

b. Zero suppression and replacement with asterisks ^

(2) The type o"^ editing which may be performed upon an item is dependent
upon the category to which the item belongs. The following table specifies
which type of editing may be performed upon a given category:

CATEGORY TYPE OF EDITING

Alphabetic
Simple insertion 'B' only

Numeric None

Alphanumeric None

Alphanumeric Edited
Simple insertion '0', 'B' and '/'

Numeric Edited All, subject to rules in rule 3 below

(3) Floating insertion editing and editing by zero suppression and replace-
ment are mutually exclusive in a PICTURE clause. Only one type of replacement

may be used with zero suppression in a PICTURE clause.

(4) Simple Insertion Editing. The ',' (comma), 'B' (space), '0' (zero),
and '/' (stroke) are used as the insertion characters. The insertion charac-

ters are counted in the size of the item and represent the position in the
item into which the character will be inserted.

(5) Special Insertion Editing. The ' . ' (period) is used as the insertion
character. In addition to being an insertion character it also represents the
decimal point for alignment purposes. The insertion character used for the

actual decimal point is counted in the size of the item. The use of the assum-

ed decimal point, represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE character-string
is disallowed. The result of special insertion editing is the appearance of

the insertion character in the -item in the same position- as shown in the
character-string.

(6) Fixed Insertion Editing. The currency symbol and the editing sign

control symbols, '+' , 'CR', 'DB', are the insertion characters. Only
one currency symbol and only one of the editing sign control symbols can be

used in a given PICTURE character-string. When the symbols 'CR' or 'DB' are
used they represent two character positions in determining the size of the
item and they must represent the rightmost character positions that are

counted in the size of the item. The symbol '+' or when used, must be
either the leftmost or rightmost character position to be counted in the size
of the item. The currency symbol must be the leftmost character position to
be counted in the size of the item except that it can be preceded by either a

'+' or a '-' symbol. Fixed insertion editing results in the insertion char-
acter occupying the same character position in the edited item as it occupied

in the PICTURE character-string. Editing sign control symbols produce the
following results depending upon the value of the data item:

11-22

Nucleus - PICTURE

EDITING SYMBOL IN

PICTURE CHARACTER-STRING

RESULT

DATA ITEM

POSITIVE OR ZERO
DATA ITEM
NEGATIVE

+ +

space CR 2 spaces
CR DB 2 spaces

DB

(7) Floating Insertion Editing. The currency symbol and editing sign

control symbols or '-' are the floating insertion characters and as such
are mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string
by using a string of at least two of the floating insertion characters. This
string of floating insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to the right of this
string. These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents the

leftmost limit of the floating symbol in the data item. The rightmost charac-
ter of the floating string represents the rightmost limit of the floating

symbols in the data item.

The second floating character from the left represents the leftmost

limit of the numeric data that can be stored in the data item. Non-zero
numeric data may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways of representing
floating insertion editing. One way is to represent any or all of the leading
numeric character positions on the left of the decimal point by the insertion

character. The other way is to represent all of the numeric character posi-
tions in the PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point

in the PICTURE character-string, the result is that a single floating inser-
tion character will be placed into the character position immediately preceding

either the decimal point or the first non-zero digit in the data represented by
the insertion symbol string, whichever is farther to the left in the PICTURE

character-string. The character positions preceding the insertion character
are replaced with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the value of
the data. If the value is zero the entire data item will contain spaces. If
the value is not zero, the result is the same as when the insertion chi/racter
is only to the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE character-string
for the receiving data item must be the number of characters in the sending

11-23

Nuateus - PICTURE

data item, plus the nuiniber of non-floating insertion characters being edited
into the receiving data item, plus one for the floating insertion character.

(8) Zero Suppression Editing. The suppression of leading zeroes in v

numeric character positions is indicated by the use of the alphabetic charac-

ter 'Z' or the character (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in determining the size

of the item. If 'Z' is used the replacement character will be the space and
if the asterisk is used, the replacement character will be

Zero suppression and replacement is indicated in a PICTURE character-
string by using a string of one or more of the allowable symbols to represent

leading numeric character positions which are to be replaced v/hen the asso-
ciated character position in the data contains a zero. Any of the simple

insertion characters embedded in the string of symbols or to the immediate

right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent all of the numeric character positions in the

PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal

point, any leading zero in the data which corresponds to a symbol in the
string is replaced by the replacement character. Suppression terminates at

the first non-zero digit in the data represented by the suppression symbol
string or at the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data is not zero
the result is the same as if the suppression characters were only to the left

of the decimal point. If the value is zero and the suppression symbol is 'Z',
the entire data item will be spaces. If the value is zero and the suppression

symbol is the data item will be all except for the actual decimal

point.

(9) The symbols , 'Z', and the currency symbol, when used as
floating replacement characters, are mutually exclusive within a given

character-string.

4.7.6 Precedence Rules

The chart on page 11-25 shows the order of precedence when using characters

as symbols in a character-string. An 'X' at an intersection indicates that
the symbol (s) at the top of the column may precede, in a given character-
string, the symbol(s) at the left of the row. Arguments appearing in braces
indicate that the symbols are mutually exclusive. The currency symbol is

indicated by the symbol 'cs'.

At least one of the symbols 'A', 'X', 'Z', '9' or or at least two of

the symbols , or 'cs' must be present in a PICTURE string.

11-24

Nucleus - PICTURE

PICTURE Character Precedence Chart

\ First
\ Symbol

Non-Floating
Insertion Symbols

Floating

Insertion Symbols Other Synbols

SecondN.
Symbol \.

B 0 / > • CI

(-1

a
cs

\%

1-]

1-] cs

cs

9 A
X S V p p

B X X X X X X X X X X X X X X X X X

u X X X X X X X X X X X X X X X X X

No
n-
Fl
oa
ti
ng

In
se
rt
io
n

Sy
mb
ol
s

/ X X X X X X X X X X X X X X X X X

» X X X X X X X X X X X X X X X X

X X X X X X X X X X

l-i

l-J

X X X X X X X X X X X X X X

\DBj
X X X X X X X X X X X X X X

cs X

Fl
oa
ti
ng

In
se
rt
io
n

Sy
mb
ol
s

*1

X X X X X X X

1*1 X X X X X X X X X X X

li
\-}

X X X X X X

1-1
X X X X X X X X X X

cs X X X X X X

cs X X X X X X X X X X

Ot
he
r

Sy
in
bo
ls

9 X X X X X X X X X X X X X X X

A
X X X X X X

S

V X X X X X X X X X >: X

p X X X X X X X X X X X X

p X X
1

X X X

11-25

Nucleus - PICTURE

Non-floating insertion symbols and floating insertion symbols 'Z',
'+', and 'cs', and other symbol 'P' appear twice in the PICTURE

character precedence chart on page 11-25. The leftmost column and uppermost
row for each symbol represents its use to the left of the decimal point posi-

tion. The second appearance of the symbol in the chart represents its use to
the right of the decimal point position.

II-

26

Nucleus - REDEFINES

4.8 THE REDEFINES CLAUSE

4.8.1 Function

The REDEFINES clause allows the same computer storage area to be described

by different data description entries.

4.8.2 General Format

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are shown in the

above format to improve clarity. Level-number and data-name-1
are not part of the REDEFINES clause.

4.8.3 Syntax Rules

(1) The REDEFINES clause, when specified, must immediately follow

data-name-1 .

(2) The level-numbers of data-name-1 and data-name-2 must be identical.
but must not be 66 or

(3) This clause must not be used in level 01 entries in the File Section.

(See page IV-12, The DATA RECORDS Clause, General Rule 2.)

(4) This clause must not be used in level 01 entries in the Communication
Section.

(5) The data description entry for data-name-2 cannot contain a REDEFINES
clause. In Level 1, data-name-2 cannot be subordinate to an entry which con-

tains a REDEFINES clause. | In Level 2, data-name-2 may be subordinate to an
entry which contains a REDEFINES clause.) The data description entry for data

name-2 cannot contain an OCCURS clause. [However, data-name-2 may be subordi-
nate to an item whose data description entry contains an OCCURS clause. In

th is case, the reference to data— name— 2 in the REDEFINES clause may not be
subscripted or indexed. | Neither the original definition nor the redefinition
can include an item whose size is variable as defined in the OCCURS clause.

(See page III-2, The OCCURS Clause.)

(6) No entry having a level-number numerically lower than the level-number
of data-name-2 and data-name-1 may occur between the data description entries
of data-name-2 and data-name-1.

4.8.4 General Rules

(1) Redefinition starts at data-name-2 and ends V7hen a level-number less
than or equal to that of data-name-2 is encountered.

(2) When the level-number of data-name-1 is other than 01, it must specify
the same number of character positions that the data item referenced by data-
name-2 contains. It is important to observe that the REDEFINES clause speci-

fies the redefinition of a storage area, not of the data items occupying the
area.

11-27

Nucleus - REDEFINES

(3) Multiple redefinitions of the same character positions are permitted.
Tlie entries giving the new descriptions of the character positions must follow

the entries defining the area being redefined, without intervening entries

that define new character positions. Multiple redefinitions of the same char-

acter positions must all use the data-name of the entry that originally defined
the area.

(4) The entries giving the new description of the character positions must

not contain any VALUE clauses , j except in condition-name entries.

(5) Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

11-28

Nucleus - RENAMES

4.9 THE RENAMES CLAUSE

4.9.1 Function

The RENAMES clause permits alternative, possibly overlapping, groupings of
elementary items .

4.9.2 General Format

66 data-name-1 ; RENAMES data-name-2

THROUGH^

THRU data-name-3

NOTE: Level-number 66, data-name-1 and the semicolon are shown in the

above format to improve clarity. Level-number and data-name-1
are not part of the RENAMES clause..

4.9.3 Syntax Rules

Cl) All RENAMES entries referring to data items within a given logical

record must immediately follow the last data description entry of the asso-
ciated record description entry.

(2) Data-name-2 and data-name-3 must be names of elementary items or
groups of elementary items in the same logical record, and cannot be the same

data-name. A 66 level entry cannot rename another 66 level entry nor can it
rename a 77, 88, or 01 level entry.

(3) Data-name-1 cannot be used as a qualifier, and can only be qualified
by the names of the associated level 01, FD, CD or SD entries. Neither

data-name-2 nor data-name-3 may have an OCCURS clause in its data description
entry nor be subordinate to an item that has an OCCURS clause in its data

description entry. (See page III-2, The OCCURS Clause.)

(4) The beginning of the area described by data-name-3 must not be to the
left of the beginning of the area described by data-narae-2. The end of the
area described by data-name-3 must be to the right of the end of the area

described by data-name-2. Data-name-3, therefore, cannot be subordinate to
data-name-2 .

(5) Data-name-2 and data-name-3 may be qualified.

(6) The words THRU* and THROUGH are equivalent.

(7) None of the items within the range, including data-name-2 and data-
name-3, if specified, can be an item whose size is variable as defined in the
OCCURS clause (see page III-2) .

4.9.4 General Rules

(1) One or more RENAMES entries can be written for a logical record.

(2) When data-name-3 is specified, data-name-1 is a group item which
includes all elementary items starting with data-name-2 (if data-name-2 is an
elementary item) or the first elementary item in data-name-2 (if data-name-2

11-29

Nucleus - RENAMES

is a group item) , and concluding with data-name-3 (if data-name-3 is an
elementary item) or the last elementary item in data-name-3 (if data-name-3
is a group item) .

(3) data-name-3 is not specified, data-name-2 can be either a group
or an elementary item; when data-name-2 is a group item, data-name-1 is treat-

ed as a group item, and when data-name-2 is an elementary item, data-name-1 is
treated as an elementary item.

11-30

Nucleus - SIGN

4.10 THE SIGN CLAUSE

4.10.1 Function

The SIGN clause specifies the position and the mode of representation of
the operational sign when it is necessary to describe these properties
explicitly.

4.10.2 General Format

liiliG] [separate
 character]

4.10.3 Syntax Rules ^.

(1) The SIGN clause m^y be specified only for a numeric data description

entry whose PICTURE contains the character 'S', or a group item containing at
least one such numeric data description entry.

(2) The numeric data description entries to which the SIGN clause applies
must be described as usage is DISPLAY.

(3) At most one SIGN clause may apply to any given numeric data descrip-
tion entry.

(4) If the CODE-SET clause is specified, any signed numeric data descrip-
tion entries associated with that file description entry must be described

with the SIGN IS SEPARATE clause,

4.10.4 General Rules

(1) The optional SIGN clause, if present, specifies the position and the

mode of representation of the operational sign for the numeric data descrip-
tion entry to which it applies, or for each numeric data description entry

subordinate to the group to which it applies. The SIGN clause applies only

to numeric data description entries whose PICTURE contains the character 'S';
the 'S' indicates the presence of, but neither the representation nor, neces-

sarily, the position of the operational sign.

(2) A numeric data description entry whose PICTURE contains the character

'S', but to which no optional SIGN clause applies, has an operational sign,
but neither the representation nor, necessarily, the position of the opera-

tional sign is specified by the character 'S'. In this (default) case, the
implementor will define the position and representation of the operational
sign. General rules 3 through 5 do not apply to such signed numeric data
items .

(3) If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign will be presumed to be associated with the

leading (or, respectively, trailing) digit position of the elementary numeric
data item.

11-31

Nucleus - SIGN

b. The letter 'S' in a PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format characters)

c. The implementor defines what constitutes valid sign(s) for data
items. .

(4) If the optional SEPARATE CHARACTER phrase is present, then:

a. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary numeric data
item; this character position is not a digit position.

b. The letter 'S' in a PICTURE Jnaracter-string is counted in deter-
mining the size of the item (in terms of standard data format characters) .

c. The operational signs for positive and negative are the standard

data format characters '+| and respectively.

(5) Every num.eric data description entry whose PICTURE contains the char-'
acter 'S' is a signed numeric data description entry. If a SIGN clause
applies to such ar entry and conversion is necessary for purposes of computa-

tion or comparisons, conversion takes place automatically.

11-32

Nucleus - SYNCHRONIZED

4.11 THE SYNCHRONIZED CLAUSE

4.11.1 Function

The SYNCHRONIZED clause specifies the alignment of an elementary item on

the natural boundaries of the computer memory (see page 1-87, Item Alignment
for Increased Object-Code Efficiency).

4.11.2 General Format

SYNCHRONIZED

SYNC

LEFT
'

RIGHT

4.1.1.3 Syntax Rules ^ ■

(1) This clause may only appear with an elementary item.

(2) SYNC is an abbreviation for SYNCHRONIZED.

4.11.4 General Rules

(1) This clause specifies that the subject data item is to be aligned in

the computer such that no other data item occupies any of the character posi-
tions between the leftmost and rightmost natural boundaries delimiting this

data item. If the number of character positions required to store this data
item is less than the number of character positions between those natural

boundaries, the unused character positions (or portions thereof) must not be
used for any other data item. Such unused character positions, however, are
included in:

and
a. The size of any group item(s) tc which the elementary item belongs;

b. The character positions redefined when this data item is the object
of a REDEFINES clause.

(2) SYNCHRONIZED not followed by either RIGHT or LEFT specifies that the
elementary item is to be positioned between natural boundaries in such a way
as to effect efficient utilization of the elementary data item. The specific

positioning is, however, determined by the implementor.

(3) SYNCHRONIZED LEFT specifies that the elementary item is to be posi-
tioned such that it v;ill begin at the left character position of the natural

boundary in which the elementary item is placed.

(A) SYNCHRONIZED RIGHT specifies that the elementary item is to be posi-
tioned such that it will terminate on the right character position of the

natural boundary in which the elementary item is placed.

(5) \>/henever a SYNCHRONIZED item is referenced in the source program, the

original size of the item, as shown in the PICTURE clause, is used in deter-
mining any action that depends on size, such as justification, truncation or

overflow.

11-33

Nucleus - SYNCHRONIZED

(6) If the data description of an item contains the SYNCHRONIZED clause

and an operational sign, the sign of the item appears in the normal operation-
al sign position, regardless of whether the item is SYNCHRONIZED LEFT or

SYNCHRONIZED RIGHT.

(7) When the SYNCHRONIZED clause is specified in a data description entry
of a data item that also contains an OCCURS clause, or in a data description
entry of a data item subordinate to a data description entry that contains an
OCCURS clause, then:

a. Each occurrence of the data item is SYNCHRONIZED.

b. Any implicit FILLER generated for other data items within that ■
same table are generated for each occurrence of those data items. (See

general rule 8b.) ^

(8) This clause is hardware dependent and in addition to rules 1 thru 7,

the implementor must specify how elementary items associated with this clause
are handled regarding:

a. The format on the external media of records or groups containing
elementary items whose data description contains the SYNCHRONIZED clause.

b. Any necessary generation of implicit FILLER, if the elementary
item immediately preceding an item containing the SYNCHRONIZED clause does

not terminate at an appropriate natural boundary. Such automatically gener-
ated FILLER positions are included in:

1) Tlie size of any group to which the FILLER item belongs; and

2) The number of character positions allocated when the group

item of which the FILLER item is a part appears as the object of a REDEFINES
clause.

(9) An implementor may, at his option, specify automatic alignment for
any internal data formats except, within a record, data items whose usage is
DISPLAY. However, the record itself may be synchronized.

(10) Any rules for synchronization of the records of a data file, as this
effects the synchronization of elementary items, will be specified by the
implementor.

Nucleus - USAGE

4.12 THE USAGE CLAUSE

4.12.1 Function

The USAGE clause specifies the fomat of a data item in the computer storage,

4.12.2 General Format

COMPUTATIONAL^

[usage is]
f COMP
display

4.12.3 Syntax Rules ■

(1) The PICTURE character-string of a COMPUTATIONAL item can contain only

'9's, the operational sign character 'S', the implied decimal point character
'V', one or more 'P's. (See page 11-18, The PICTURE Clause.)

(2) COMP is an abbreviation for COMPUTATIONAL.

4.12.4 General Rules

(1) The USAGE clause can be written at any level. If the USAGE clause is

written at a group level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE clause of

a group to which the item belongs.

(2) This clause specifies the manner in which a data item is represented
in the storage of a computer. It does not affect the use of the data item,
although the specifications for some statements in the Procedure Division may
restrict the USAGE clause of the operands referred to. The USAGE clause may
affect the radix or type of character representation of the item.

(3) A COMPUTATIONAL item is capable of representing a value to be used in
computations and must be numeric. If a group item is described as

COMPUTATIONAL, the elementary items in the group are COMPUTATIONAL. The group
item itself is not COMPUTATIONAL (cannot be used in computations) .

(4) The USAGE IS DISPLAY clause indicates that the format of the data is
a standard data format.

(5) If the USAGE clause is not specified for an elementary item, or for
any group to which the item belongs, the usage is implicitly DISPLAY.

11-35

Nucleus - VALUE

4.13 THE VALUE CLAUSE

4.13.1 Function

Hie VALUE clause defines the value of constants, the value of Report
Section printable items, the initial value of v7orking storage items, the
initial value of data items in the Communication Section, and the values

associated with a condition-name.

4.13.2 General Format

Format 1

VALUE IS literal

: Format 2

i f VALUE IS
ALUES ARE literal-1

THROUGH
THRU

literal-2

, literal-3

(THROUGH^ , .

I THRU j
 l^teral-4

4.13.3 Syntax Rules

(1) The words THRU and THROUGH are equivalent.

(2) The VALUE clause cannot be stated for any items whose size is variable;,

(See page III-2, The OCCURS Clause.) ;

(3) A signed numeric literal must have associated with it a signed numericj

PICTURE character-string.

(4) All numeric literals in a VALUE clause of an item must have a value

which is within the range of values indicated by the PICTURE clause, and must
not have a value which would require truncation of nonzero digits. Nonnumeric
literals in a VALUE clause of an item must not exceed the size indicated by
the PICTURE clause.

4.13.4 General Rules

(1). The VALUE clause must not conflict with other clauses in the data

description of the item or in the data description within the hierarchy of

the item. The following rules apply:

ct. If the category of the Itam is numeric, all literals in the VALUE
clause must be numeric. If the literal defines the value of a working storage

item, the literal is aligned in the data item according to the standard align-
ment rules. (See page 1-86, Standard Alignment Rules.)

11-36

Nucleus - VALUE

b. If the category of the item is alphabetic, alphanumeric, alpha-
numeric edited or numeric edited, all literals in the VALUE clause must be

nonnumeric literals. The literal is aligned in the data item as if the data

item had been described as alphanumeric. (See page 1-86, Standard Alignment
Rules.) Editing characters in the PICTURE clause are included in determining

the size of the data item (see page 11-18, The PICTURE Clause) but have no
effect on initialization of the data item. Therefore, the VALUE for an

edited item is presented in an edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

(2) A figurative constant may be substituted in both Format 1 and Format 2
wherever a literal is specified.

4.13.5 Condi ti on -Name Rules

(1) In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses permitted in the

entry. The characteristics of a condition-name are implicitly those of its
conditional variable.

(2) Format 2 can be used only in connection with condition-names. (See

page 1-91, Condition-Name.) Wherever the THRU phrase is used, literal- 1 must
be less than literal-2, literal-3 less than literal-4, etc.

4.13.6 Data Description Entries Other Than Condition-Names

(1) Rules governing the use of the VALUE clause differ with the respective
sections of the Data Division:

 a. In Level 1, the VALUE clause cannot be used in the File Section.

In the File Section, the VALUE clause may be used only in condition-name
entries .

b. In the Working-Storage Section and the Communication Section, [the
VALUE clause must be used in condition-name entries. The VALUE clause may also
be used to specify the initial value of any other data item; in which case the

clause causes the item to assume the specified value at the start of the object

program. If the VALUE clause is not used in an item's description, the initial
value is undefined.

 c. In Level 1, the VALUE clause cannot be used in the Linkage Section.

In the' Linkage Section, the VALUE clause may be used only in condition-name
entries .

d. In the Report Section, if the elementary report entry containing
the VALUE clause does not contain a GROUP INDICATE clause, then the printable

item will assume the specified value each time its report group is printed,
iiowever, when the GROUP INDICATE clause is also present, the specified value

will be presented only when certain object time conditions exist. (See page

VIII-31, The GROUP INDICATE Clause.)

11-37

Nucleus - VALUE

(2) The VALUE clause must not be stated in a data description entry that
contains an OCCURS clause, or in an entry that is subordinate to an entry
containing an OCCURS clause

entries.] (See page III-2, The OCCURS Clause.)

This rule does not apply to condition-name

(3) The VALUE clause must not be stated in a data description entry that
contains a REDEFINES clause, or in an entry that is subordinate to an entry
containing a REDEFINES clause,
entries .

This rule does not apply to condition-name

(4) If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and the group
area is initialized without consideration for the individual elementary or

group items contained within this group. The VALUE clause cannot be stated
at the subordinate levels within this group.

(5) The VALUE clause must not be written for a group containing items

vith descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other than
USAGE IS DISPLAY).

11-38

Nucleus - Arithmetic Expressio/is

5. PROCEDURE DIVISION IN THE NUCLEUS

5.1 ARITHMETIC EXPRESSIONS

5.1.1 Definition of an Arithmetic Expression

An arithmetic expression can be an identifier of a numeric elementary item,

a numeric literal, such identifiers and literals separated by arithmetic oper-
ators, two arithmetic expressions separated by an arithmetic operator, or an

arithmetic expression enclosed in parentheses. Any arithmetic expression may

be preceded by a unary operator. The permissible combinations of variables,
numeric literals, arithmetic operator and parentheses are given in Table I,

Combination of Symbols in Arithmetic Expressions, on page 11-40.

Those identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on which arith-

metic may be performed. j

5.1.2 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic opera-
tors that may be used in arithmetic expressions. They are represented by

specific characters that must be preceded by a space and followed by a space.

Meaning

Addition
Subtraction

Multiplication
Division

Exponentiation

Meaning

The effect of multiplication

by numeric literal +1

The effect of multiplication

by numeric literal -1.

5.1.3 Formation And Evaluation Rules

(1) Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within parentheses
are evaluated first, and within nested parentheses, evaluation proceeds from
the least inclusive set to the most inclusive set. VJhen parentheses are not
used, or parenthesized expressions are at the same level of inclusiveness ,
the following hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Exponentiation
3rd - Multiplication and division
4th - Addition and subtraction

Binary Arithmetic

 Operators

+

I

**

Unary Arithmetic
Operators

11-39

Nucleus - Arithmetic Expressions

(2) Parentheses are used either to eliminate ambiguities in logic where

consecutive operations of the same hierarchical level appear or to modify the
normal hierarchical sequence of execution in expressions where it is necessary
to have some deviation from the normal precedence. When the sequence of execu^
tion is not specified by parentheses, the order of execution of consecutive

operations of the same hierarchical level is from left to right.

(3) The ways in which operators, variables, and parentheses may be combined
in an arithmetic expression are summarized in Table 1, where:

a. The letter 'P' indicates a permissible pair of symbols.

b. The character '-' indicates an invalid pair.

c. 'Variable' indicates an identifier or literal.

!
FIRST

1 ' SECOND SYMBOL
SYMBOL

Variable
Unary + or -

()

Variable p P

■k 1 ■k'k ̂ P P

'P

Unary -f- or -
P P

(P P P

) p P

Table 1. Combination of Symbols in Arithmetic Expressions

(4) An arithmetic expression may only begin with the symbol '(', '+' ,
or a variable and may only end with a ')' or a variable. There must be a one-
to-one correspondence between left and right parentheses of an arithmetic
expression such that each left parenthesis is to the left of its corresponding
right parenthesis.

(5) Arithmetic expressions allovv' the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items.

See, for example, syntax rule 3 on page 11-55. Each implementor will indicate
the techniques used in handling arithmetic expressions.

11-40

Nucleus - Conditional Expressions

5.2 CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested to enable the

object program to select between alternate paths of control depending upon the
truth value of the condition. Conditional expressions are specified in the IF,

PERFORM and SEARCH statements. Tliere are tv/o categories of conditions asso-
ciated with conditional expressions: simple conditions [and complex conditions.

Each may be enclosed within any number of paired parentheses, in which case its
category is not changed.

5.2.1 Simple Conditions

The simple conditions are the relation, class, condition-name , switch-status,

and sign conditions. A simple condition has a truth value of 'true' or 'false'.
The inclusion in parentheses of. simple conditions does not change the simple
truth value.

5.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may
be the data item referenced by an identifier, a literal, or the value result-
ing from an arithmetic expression. | A relation condition has a tryth value of

'true' if the relation exists between the operands. Comparison of two numeric
operands is permitted regardless of the formats specified in their respective
USAGE clauses. However, for all other comparisons the operands must have the

same usage. If either of the operands is a group item, the nonnumeric compar-
ison rules apply.

The general format of a relation condition is as follows:

identif ier-1

literal-1

ar ithme tic-express ion- 1

^ IS [NOT] GREATER THANj
IS [NOT] LESS THAN 1
IS [NOT] EQUAL TO / IS

[NOT] > IS
[NOT] <

IS

[NOT] =

identif ier-2

literal-2
arithmetic-express ion- 2

NOTE: The required relational characters '>

and '='

are
not underlined to avoid confusion with other symbols

such as '>' (greater than or equal to).

The first operand (identif ier-1 , literal-1 , 1 or arithmetic-expression- 1 1) is
called the subject of the condition; the second operand (identif ier-2 , literal-2

or arithmetic-expression-2|) is called the object of the condition. The rela-
tion condition must contain at least one reference to a variable.

The relational operator specifies the type of comparison to be made in a

relation condition. A space must precede and follow each reserved word com-

prising the relational operator. t^Jhen used, 'NOT' and the next key word or
relation character are one relational operator that defines the comparison to

be executed for truth value; e.g., 'NOT EQUAL' is a truth test for an 'unequal'

11-41

Nucleus - Relation Condition

comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison.
The meaning of the relational operators is as follows :

Meaning

Greater than or not greater than

Less than or not less than

Equal to or not equal to

Relational Operator

IS
[NOT] >

IS [NOT] LESS

IS [NOT] <

IS [NOT]

EQUAL
IS

[NOT]

NOTE: The required relational characters '>', '<', and '=' are not
underlined to avoid confusion with other symbols such as

 '>' (greater th^n or equal to).

5.2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric (see page 1-85, paragraph 5.3.3.3),
a comparison is made with respect to the algebraic value of the operands. The

length of the literal |or arithm-etic expression operands, in terms of number
of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive
for purposes of comparison.

5.2.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a com-
parison is made with respect to a specified collating sequence of characters

(see page II-6, The OBJECT-COMPUTER Paragraph). If one of the operands is
specified as numeric, it must be an integer data item or an integer literal
and :

a. If the nonnumeric operand is an elementary data item or a nonnumeric

literal, the numeric operand is treated as though it were moved to an elemen-
tary alphanumeric data item of the same size as the numeric data item (in terms

of standard data format characters) , and the contents of this alphanumeric data

item were then compared to the nonnumeric operand. (See page 11-74, The MOVE

Statement, and page 11-20, the PICTURE character 'P'.)

b. If the nonnumeric operand is a group item, the numeric operand is
treated as though it were moved to a group item of the same size as the numeric

data it^r., (in terms of standard data format characters), and the contents of

this group item were then compared to the nonnumeric operand. (See page 11-74,

The MOVE Statement, and page 11-20, the PICTURE character 'P'.)

c. A non-integer numeric operand cannot be compared to a nonnumeric operand.

6-73 11-42

Nucleus - Class Condition

The size of an operand is the total number of standard data format char-
acters in the operand. Numeric and nonnumeric operands may be compared only

when their usage is the same.

There are two cases to consider: operands of equal size [and operands of

unequal size.~|

(1) Operands of equal size. If the operands are of equal size, comparison

effectively proceeds by comparing characters in corresponding character posi-
tions starting from the high order end and continuing until either a pair of

unequal characters is encountered or the low order end of the operand is reach-
ed, whichever comes first. The operands are determined to be equal if all

pairs of characters compare equally through the last pair, when the low order
end is reached.

The first encountered pair of unequal characters is compared to deter-
mine their relative position in the collating sequence. The operand that

contains the character that is positioned higher in the collating sequence is
considered to be the greater operand.

(2) Operands of unequal size. If the operands are of unequal size, com-
parison proceeds as though the shorter operand were extended on the right by

sufficient spaces to make the operands of equal size. ^^^^

5.2. 1.2 Class Condition

The class condition determines whether the operand is numeric, that is,

consists entirely of the characters '0', '1', '2', '3', '9', with or
without the operational sign, or alphabetic, that is, consists entirely of

the characters 'A', 'B', 'C, 'Z', space. The general format for the
class condition is as follows:

'A TO Tm^^t^I j NUMERIC
identxfxer IS [nOT] j^^gETIC

The usage of the operand being tested must be described as display. When

used, 'NOT' and the next key word specify one class condition that defines
the class test to be executed for truth value; e.g. 'NOT NUMERIC' is a truth
test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description describes
the item as alphabetic or as a. group item composed of elementary items whose
data description indicates the presence of operational sign(s). If the data

description of the item being tested does not indicate the presence of an oper-
ational sign, the item being tested is determined to be numeric only if the

contents are numeric and an operational sign is not present. If the data

uescription of the item does indicate the presence of an operational sign, the
item being tested is determined to be numeric only if the contents are numeric

and a valid operational sign is present. Valid operational signs for data
items described vjith the SIGN IS SEPARATE clause are the standard data format

characters, '+' and '-'; the implementor defines what constitutes valid sign(s)
for data items not described with the SIGN IS SEPARATE clause.

11-43

Nucleus - Condition-Name Condition

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be
alphabetic only if the contents consist of any combination of the alphabetic

characters 'A' through 'Z' and the space.

5,2.1.3 Condition-Name Condition (Conditional Variable)

In a condition-name condition, a conditional variable is tested to deter-
mine whether or not its value is equal to one of the values associated with a

condition-name. The general format for the condition-name condition is as
follows :

condi cion-name

If the condition-name is associated with a range or ranges of values, then
the conditional variable is tested to determine whether or not its value falls

in this range, including the end values.

The rules for comparing a conditional variable with a condition-name value
are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the

j coadition-name equals the value of its associated conditional variable.

5.2.1.4 Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of an

implementor-def ined switch. The implement or-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES paragraph of

the Environment Division. The general format for the switch-status condition
is as follows:

condition-name

The result of the test is true if the switch is set to the specified posi-
tion corresponding to the condition-name.

5.2.1.5 Sign Condition

The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to zero. The
general format for a sign condition is as follows:

arithmetic-expression IS

II- A 4

Nucleus - Complex Conditions

When used, 'NOT' and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value; e.g., 'NOT ZERO'
is a truth test for a nonzero (positive or negative) value. An operand is
positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value is equal to zero. The arithmetic expression
must contain at least one reference to a variable.

5.2.2 Complex Conditions

A complex condition is formed by combining simple conditions, combined

conditions and/or complex conditions with logical connectors (logical opera-

tors 'AND' and 'OR') or negating these conditions with logical negation
(the logical operator 'NOT'). The truth value of a complex condition, whether
parenthesized or not, is that truth value which results from the interaction
of all the stated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions logically connected
or logically negated.

The logical operators and their meanings are:

Logical Operator Meaning

AND Logical conjunction; the truth value is 'true' if
both of the conjoined conditions are true; 'false'
if one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is 'true' if
one or both of the included conditions is true;

'false' if both included conditions are false.

NOT Logical negation or reversal of truth value; the

truth value is 'true' if the condition is false;
'false' if the condition is true.

The logical operators must be preceded by a space and followed by a space.

5.2.2.1 Negated Simple Conditions

A simple condition (see page 11-41) is negated through the use of the

logical operator 'NOT'. The negated simple condition effects the opposite
truth value for a simple condition. Thus the truth value of a negated simple

condition is 'true' if and only if the truth value of the simple condition is
'false'; the truth value of a negated simple condition is 'false' if and only
if the- truth value of the simple condition is 'true'. The inclusion in paren-

theses of a negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

11-45

Nucleus - Combined Conditions

5.2.2.2 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the

logical operators 'AND' or 'OR'. The general format of a combined condition
is :

condition

Where 'condition' may be:

(1) A simple condition, or

(2) A negated simple condition, or

(3) A combined condition, or

(4) A negated combined condition; i.e., the 'NOT' logical operator
followed by a combined condition enclosed within parentheses, or

(5) Combinations of the above, specified according to the rules summarized

in table 2, Combinations of Conditions, Logical^ Operators , and Parentheses,
located on the next page.

Although parentheses need never be used when either 'AND' or 'OR' (but not
both) is used exclusively in a combined condition, parentheses may be used to

effect a final truth value when a mixture of 'AND', 'OR' and 'NOT' is used.
(See table 2, Combinations of Conditions, Logical Operators, and Parentheses,

on the next page and paragraph 5.2. A, Condition Evaluation Rules, on page 11-48.)

Table 2 on the next page indicates the ways in which conditions and logical

operators may be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left paren-

thesis is to the left of its corresponding right parentheses.

11-46

Nucleus - Abbreviated Combined Relation Conditions

ing element

Location in
conditional

expression

In a left-to-right sequence of elements:

Element, when not
first, may be

immediately pre-
ceded by only:

Element, when not
last , may be

immediately fol- lowed by only :
First Last

simple-condition
I cts Ypc Co

OR, NOT, AND, (
OR, AND,)

OR or AND
No No

simple-condition,) simple-condition,

NOT, (

NOT Yes No
OR, AND, (simple-condition 5 (

(Yes

No "

OR, NOT, AND, (simple-condition ,

NOT, (

)

1 No

Yes
simple-condition,)

OR, AND,)

Table 2, Combinations of Conditions, Logical Operators, and Parentheses

Thus, the element pair 'OR NOT' is permissible while the pair 'NOT OR' is
not permissible; 'NOT (' is permissible while 'NOT NOT' is not permissible.

5.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the

preceding relation condition, and no parentheses are used within such a

consecutive sequence, any relation condition except the first may be abbre-
viated by:

(1) The omission of the subject of the relation condition, or

(2) The omission of the subject and relational operator of the relation
condition.

The format for an abbreviated combined relation condition is:

relation- condition

[and
"

[or

j^NOr] [relational-operator] object

Within a sequence of relation conditions both of the above forms of abbre-
viation may be used. The effect of using such abbreviations is as if the last

preceding stated subject were inserted in place of the omitted subject, and
the last stated relational operator were inserted in place of the omitted
relational operator. The result of such implied insertion must comply with
the rules of Table 2, Combinations of Conditions, Logical Operators, and
Parentheses, shown above. This insertion of an omitted subject and/or

11-47

Nucleus - Condition Evaluation Rules

relational operator terminates once a complete simple condition is encountered
within a complex condition.

The interpretation applied to the use of the word 'NOT' in an abbreviated
combined relation condition is as follows:

(1) If the word immediately following 'NOT' is 'GREATER', '>', 'LESS',
'<', 'EQUAL', '=', then the 'NOT' participates as part of the relational
operator; otherwise

(2) The 'NOT' is interpreted as a logical operator and, therefore, the
implied insertion of subject or relational operator results in a negated
relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined

Relation Condition Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c AND NOT d) NOT ((((a NOT > b) AND (a NOT > c)) AND
(NOT (a NOT > d))))

5.2.4 Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions
of complex conditions are to be evaluated when it is necessary to depart from

the implied evaluation precedence. Conditions within parentheses are evaluated
first, and, within nested parentheses, evaluation proceeds from the least
inclusive condition to the most inclusive condition. When parentheses are not
used, or parenthesized conditions are at the same level of inclusiveness , the

following hierarchical order of logical evaluation is implied until the final
truth value is determined:

(1) Values are established . for arithmetic expressions. (See Formation

and Evaluation Rules on page 11-39.)

(2) Truth values for simple conditions are established in the following
order:

relation (following the expansion of any abbreviated relation
condition)

class

condition-name
switch-status
sign

11-48

Nucleus - Condition Evaluation Rules

(3) Truth values for negated simple conditions are established.

(4) Truth values for combined conditions are established:

'AND' logical operators, followed by
'OR' logical operators.

(5) Truth values for negated combined conditions are established.

(6) When the sequence of evaluation is not completely specified by paren-
theses, the order of evaluation of consecutive operations of the same

hierarchical level is _ from left to right.

11-49

Nucleus - Options & Rules for Formats

5.3 COMMON PHRASES AND GENERAL RULES FOR STATEMENT FORMATS

In the statement descriptions that follow, several phrases appear frequent-
ly: the ROUNDED phrase, the SIZE ERROR phrase, and the CORRESPONDING phrase.

In the discussion below, a resultant-identifier is that identifier associ-
ated with a result of an arithmetic operation.

5.3.1 The ROUNDED Phrase

If, after decimal point alignment, the number of places in the fraction of

the result of an arithmetic operation is greater than the number of places

provided for the fraction of the resultant-identifier, truncation is relative

to the size provided for the resultant-identifier. When rounding is requested,

the absolute value of the resultant-identifier is increased by one (1) when-
ever the .most significant digit of the excess is greater than or equal to

five (5) .

Wlien the low-order integer positions in a resultant-identifier are repre-

sented by the character 'P' in the picture for that resultant-identifier,
rounding or truncation occurs relative to the rightmost integer position for
which storage is allocated.

5.3.2 The SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result exceeds

the largest value that can be contained in the associated resultant-identifier,
a size error condition exists. Division by zero always causes a size error
condition. The size error condition applies only to the final results of an
arithmetic operation and does not apply to intermediate results, except in
the MULTIPLY and DIVIDE statements, in which case the size error condition

applies to the intermediate results as well. If the ROUNDED phrase is speci-
fied, rounding takes place before checking for size error. I'Jhen such a size

error condition occurs, the subsequent action depends on whether or not the
SIZE ERROR phrase is specified.

(1) If the SIZE ERROR phrase is not specified and a size error condition

occurs, the value of those resultant-identifier (s) affected is undefined.
Values of resultant-identif ier (s) for which no size error condition occurs

are unaffected by size errors that occur for other resultant-identif ier (s)
during execution of this operation.

(2) If the SIZE ERROR phrase is specified and a size error condition

occurs , then the values of resultant-identif ier (s) affected by the size errors
are not altered. Values of resultant-identif ier (s) for which no size error

condition occurs are unaffected by size errors that occur for other resultant-
identif ier(s) during execution of this operation. | After completion of the
execution of this operation, the imperative statement in the SIZE ERROR phrase
is executed.

For the ADD statement with the CORRESPONDING phrase and the SUBTRACT state-
ment with the CORRESPONDING phrase, if any of the individual operations produces

a size error condition, the imperative statement in the SIZE ERROR phrase is
not executed until all of the individual additions or subtractions are completed.

11-50

Nucleus - Options & Rules for Formats

5.3.3 The CORRESPONDING Phrase

For the purpose of this discussion, and must each be identifiers that

refer to group items. A pair of data items, one from d^^ and one from cor-
respond if the following conditions exist:

(1) A data item in d^^ and a data item in are not designated by the key
word FILLER and have the same data-name and the same qualifiers up to, but not

including, d^ and d^'

(2) At least one of the data items ip an elementary data item in the case
of a MOVE statement with the CORRESPONDiKG phrase; and both of the data items

are elementary numeric data items in the case of the ADD statement with the
CORRESPONDING phrase or the SUBTRACT statement with the CORRESPONDING phrase.

(3) The description of d and d must not contain level-number 66, 77, or
88 or the USAGE IS INDEX cjlause.

(4) A data item that is subordinate to d. or d^ and contains a REDEFINES,
RENAMES, OCCURS or USAGE IS INDEX clause is ignored, as well as those data
items subordinate to the data item that contains the REDEFINES, OCCURS, or

USAGE IS INDEX clause. However, di and d2 may have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS clauses. (See page

III-2, The OCCURS Clause.)

5.3.4 The Arithmetic Statements

The arithmetic statements are the ADD , COMPUTE , [DIVIDE , MULTIPLY, and
SUBTRACT statements. They have several common features.

(1) The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied throughout the
calculation.

(2) The maximum size of each operand is eighteen (18) decimal digits. The

composite of operands, which is a hypothetical data item resulting from the
superimposition of specified operands in a statement aligned on their decimal

points (see page 11-55, The ADD Statement; page 11-61, The DIVIDE Statement;
page 11-77, The MULTIPLY Statement; and page 11-89, The SUBTRACT Statement)
must not contain more than eighteen decimal digits. _

5.3.5 Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an

INSPECT, MOVE, SET, ["STRING, or UNSTRING 1 statement share a part of their stor- age . areas , the result of the execution of such a statement is undefined.

5.3.5 Multiple Results in Arithmetic Statements

The ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT statements may have multi-
ple results. Such statements behave as though they had been written in the

following way:

11-51

Nucleus - Options & Rules for Formats

(T) A~stateinent which performs all arithmetic necessary to arrive at the result to be stored in the receiving items, and stores that result in a

temporary storage location.

(2) A sequence of statements transferring or combining the value of this
temporary location with a single result. These statements are considered to

be written in the same left- to-right sequence that the multiple results are
listed.

The result of the statement

ADD a, b, c TO c, d (c) , e

is equivalent to

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)

ADD temp TO e

where 'temp' is an intermediate result item provided by the implementor.

5.3.7 Incompatible Data

Except for the class condition (see page 11-43, The Class Condition) , when
the contents of a data item are referenced in the Procedure Division and the

contents of that data item are not compatible with the class specified for
that data item by its PICTURE clause, then the result of such a reference is
undefined.

11-52

Nucleus - ACCEPT

5.4 THE ACCEPT STATEMENT

5.4.1 Function

Tlae ACCEPT statement causes low volume data to be made available to the

specified data item.

5.4.2 General Format

Format 1

ACCEPT identifier
["from mnemonic-name] j

Format 2

ACCEPT identifier FROM <

' DATE >

DAY
TIME

5.4. 3 Syntax Rules

(1) The mnemonic-name in Format 1 must also be specified in the SPECIAL -
NAMES paragraph of the Environment Division and must be associated with a
hardware device.

5.4.4 General Rules

FORMAT 1.

(1) The ACCEPT statement causes the transfer of data from the hardware

device. This data replaces the contents of the data item named by the
identifier .

(2) The implementor will define, for each hardware device, the size of a
data transfer.

(3) If a hardware device is capable of transferring data of the same size
as the receiving data item, the transferred data is stored in the receiving
data item.

(4) If a hardware device is not capable of transferring data of the same
size as the receiving data item, then:

a. If the size of the receiving data item|(or of the portion of the

j receiving data item not yet currently occupied by transferred data) | exceeds
the size of the transferred data, the transferred data is stored aligned to

3f;ft in the receiving data itemj (or the portion of the receiving data
item not yet occupied, and additional data is requested. In Level 1, only one
transfer of data is provided,

11-53

Nucleus - ACCEPT

b. If the size of the transferred data exceeds the size of the

receiving data item (or of the portion of the receivins; data item not yet
occupied by transferred data) , only the leftm.ost characters of the transferred

data are stored in the receiving data item (or in the portion remaining). The

remaining characters of the transferred data which do not fit into the receiv-
ing data item are ignored.

fies as standard is used.
(5) If the FROM phrase is not given, the device that the implementor speci-

FORMAT 2

(6) The ACCEPT statement causes the information requested to be trans-
ferred to the data item specified by identifier according to the rules of

the MOVE statement. DATE, DAY, and TIME are conceptual data items and, there-
fore, are not described in the COBOL program.

(7) DATE is composed of the data elements year of century, month of year,
and day of month. The sequence of the data element codes shall be from high

order to low order (left to right), year of century, month of year, and day
of month. Therefore, July 1, 1968 would be expressed as 680701. DATE, when
accessed by a COBOL program, behaves as if it had been described in the COBOL
program as an unsigned elementary numeric integer data item six digits in
length .

(8) DAY is composed of the data elements year of century and day of year.
The sequence of the data element codes shall be from high order to low order
(left to right) year of century, day of year. Tlierefore, July 1, 1968 would
be expressed as 68183. DAY, when accessed by a COBOL program, behaves as if

it had been described in a COBOL program as an unsigned elementary'' numeric
integer data item five digits in length.

(9) TIME is composed of the data elements hours, minutes, seconds and

hundredths of a second. TIME is based on elapsed time after midnight on a

24-hour clock basis — thus, 2:41 p.m. would be expressed as 14410000. TIME,
when accessed by a COBOL program behaves as if it had been described in a
COBOL program as an unsigned elementary numeric integer data item eight digits
in length. The minimum value of TIME is 00000000; the maximum value of TIME
is 23595999. If the hardware does not have the facility to provide fractional
parts of TIME, the value is converted to the closest decimal approximation.

11-54

Nucleus - ADD

5.5 THE ADD STATEMENT

5.5.1 Function

The ADD statement causes two or more numeric operands to be summed and the
result to be stored.

5.5.2 General Format

Format 1

ADD identif ier-1

literal-1
, identifier-2

, literal-2
TO identifier-m FrOUNDEdI

identifier-n ROUNDED

]j
 ■•

[; ON SIZE ERROR imperative-statement]

Format 2

ADD identifier- 1

literal-1 literal-2

-2^

, identifier-3

, literal-3

, ide.ntifier-n [ROUND Ed]

[; ON SIZE ERROR imperative-statement]

Format 3

AM (§2MSSPONEIN5.| ldenUltler-1 TO ldentlfler-2 [rOUMED]

[; ON SIZE ERROR imperative-statement]

5.5.3 Syntax Rules

(1) In Formats 1 and 2, each identifier must refer to an elementary
numeric item, except that in Format 2 each identifier follov/ing the word
GIVING must refer to either an elementary numeric item or an elementary
numeric edited item. In Format 3, each identifier must refer to a group
item .

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits (see

page 11-51, The Arithmetic Statements).

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that follow the
word GIVING.

11-55

Nucleus -ADD

c. In Format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORK is an abbreviation for CORRESPONDING.

5.5.4 General Rules

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase;
page 11-51, The CORRESPONDING Phrase; Ipage 11-51, The Arithmetic Statements;

Statements ,
page 11-51, Overlapping Operands; and page 11-51, Multiple Results in Arithmetir

\

(2) If Format 1 is used, the values of the operands preceding the word TO

are added together, then the sum is added to the current value of identifier-m

storing the result immediately into identif ier-m,) and repeating this process
respectively for each operand following the word TO.

(3) If Format 2 is used, the values of the operands preceding the word

GIVING are added together, then the sum is stored as the new value of | each

identifier-m, identif ier~n, the resultant-identifiers.

(4) If Format 3 is used, data items in identif ier-1 are added. to and

stored in corresponding data items in identif ier-1 .

(5) The compiler insures that enough places are carried so as not to lose

any significant digits during execution.

11-56

Nucleus - ALTER

5.6 THE ALTER STATEfCNT

5.6.1 Function

I The ALTER statement modifies a predetermined sequence of operations

5.6.2 General Format

ALTER procedure-name- 1 TO [PROCEED TO] procedure-name-2

1^, procedure-name-3 TO [PROCEED TO "[procedure-name-A] ...

5.6.3 Syntax Rules

(1) Each procedure-name- 1 , procedure~name~3 , is the name of a para-
graph that contains a single sentence consisting of a GO TO statement without

the DEPENDING phrase.

(2) Each procedure-name-2, procedure-name-4 , is the name of a para-
graph or section in the Procedure Division.

5.6.4 General Rules

(1) Execution of the ALTER statement modifies the GO TO statement in the

paragraph named procedure-name- 1 , procediirc-nan'ie-3 , so that subsequent
executions of the modified GO TO statemeiits cause transfer of control to

procedure-name-2, procedure-name-4, respectively . Modified GO TO state-
ments in independent segments ma^' , under some circumstances, be returned to

their initial states (see page IX-2, Independent Segments).

(2) A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with a

different segment-number.

All other uses of the ALTER statement are valid and are performed even

if procedure-name-1 , procedure-name-3l is in an overlayable fixed segment.
(See Section IX, Segmentation.)

11-57

Nucleus - COMPUTE

5.7 THE COMPUTE STATEMENT

5.7.1 Function

The COMPUTE statement assigns to one or more data items the value of an ^
arithmetic expression.

5.7.2 General Format

COMPUTE identifier-1 [ROUNDED] ̂ , identifier-2 [ROUNDED]

= arithmetic-expression [; ON SIZE ERROR imperative-statement J

5.7.3 Syntax Rules

(1) Identifiers that appear only to the left of = must refer to either an
elementary numeric item or aii elementary numeric edited item.

5.7.4 General Rules

(1) See page 11-50, The ROUNDED Phr, se, page 11-50, The SIZE ERROR Phrase;
page 11-51, The Arithmetic Statements; i age 11-51, Overlapping Operands; and
page 11-51, Multiple Results in Arithmetic Statements.

(2) An arithinelic expression consisting of a single identifier or literal

provides a method of setting the values of identifier-1, identif ii.:r-2 , etc.,

equal to tht value of the single identii ier or literal. (See page 11-39,
Arithmetic Expressions.)

(3) If more than one identifier is specified for the result of the opera-

tion, that is preceding =, the value of the arithmetic expression is computed,
and then this value is stored as the new value of each of identifier-1,

identifier-2, etc., in turn.

(4) The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on composite of operands and/or receiving data items

imposed by the arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

Thus, each implementor will indicate the techniques used in handling

arithmetic expressions.

11-58

Nucleus - display'

5.8 THE DISPLAY STATEMENT

5.8.1 Function

Tlie DISPLAY statement causes low volume data to be transferred to an

appropriate hardware device,

5.8.2 General Format

identif ier-l DISPLAY
literal-1

, identifier-2

, literal-2

UPON mnemonic-name

5.8.3 Syntax Rules

(1) The mnemonic-name is associated with a hardware device in the SPECIAL-
NAMES paragraph in the Environment Division.

(2) Each literal may be any figurative constant, except ALL.

(3) If the literal is numeric, then it must be an unsigned integer.

5.8.4 General Rules

(1) The DISPLAY statement causes the contents of each operand to be trans-
ferred to the hardware device in the order listed.

(2) The implementor will define, for each hardware device, the size of a
data transfer.

(3) If a figurative constant is specified as one of the operands, only a

single occurrence of the figurative constant is displayed.

(4) If the hardware device is not capable of receiving data of the same

size as the data item being transferred, then one of the following applies:

a. If the size of the data item being transferred exceeds the size

of the data that the hardware device is capable of receiving in a single
transfer, the data beginning with the leftmost character is stored aligned to
the left in the receiving hardware device [and additional data is requested.
In Level I, only one transfer of data is provided.

b. If the size of the data item that the hardware device is capable
of receiving exceeds the size of the data being transferred, the transferred
data is stored aligned to the left in the receiving hardware device.

(6) When a DISPLAY statement contains more than one operand, the size of

the sending item is the sum of the sizes associated with the operands, and ' the
values of the operands are transi-rred in the sequence in which the operands
are encountered.

11-59

Nucleus - DISPLAY

(7) I If the UPON phrase is not usedj the
 implementor 's standard display device is used. .

11-60

Nucleus - DIVIDE

5.9 THE DIVIDE STATEMENT

5.9.1 Function

The DIVIDE statement divides one numeric data item into others and sets the

values of data items equal to the quotient and remainder.

5.9.2 General Format

Format 1

DIVIDE ■!j"'?^^^^f^f'^"M INTO identifier-2 PrOUNDEdI l^literal-1 j L J

, identifier-3 [ROUNDED] f; ON SIZE ERROR imperative-statement]

Format 2

DIVIDE identifier- 1

literal-1
INTO identxfier 2) qj^j^q identifier-3 fROUNDED] literal-2 I L J

identifier-4 [ROUND ED] ... ON SIZE ERROR imperative-statement"]

Format 3

DIVIDE identifier- 1

literal-1
BY f identifier-2

\literal-2

GIVING identifier-3 [^ROUNDED |

[, identifier-4 [ROUND ED] ... j^; ON SIZE ERROR imperative-statement]

Format 4

DIVIDE INTO I^^r^'^T'^] GIVING identifier-3 TrOUNDEdI l^literal-1 J |^lxteral-2 J L J

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

Format 5

S identifier- 11 fidentif ier-2 1 ^ . j- . ~ r t,^t,,^t.t.'1
DIVIDE < ̂ . . . I BY .-. , ̂ \ GIVING identxfier-3 ROUNDED literal-1 — \literal-2

REMAINDER identifier-4 [; ON SIZE ERROR imperative-statement]

5.9.3 Syntax Rules

(1) Each identifier must refer to an elementary numeric item, except that

any identifier associated with the GIVINClor REMAINDER! phrase must refer to
either an elementary numeric item or an elementary numeric edited item.

11-61

Nucleus - DIVIDE

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is the liypothetical data item result-
ing from the superimposition of all receiving data items (except the REMAINDER

data item) of a given statement aligned on their decimal points, must not
contain more than eighteen digits.

6.9.4 General Rules

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase;
page 11-51, Tlie Arithmetic Statements; page 11-51, Overlapping Operands ; land
page 11-51, Multiple Results in Arithmetic Statements ;| for a description of
these functions. See also general rules 5 through 7 below for a discussion of
the ROUNDED phrase and the SIZE ERROR phrase as they pertain to Formats 4 and 5.|

(2) Wlien Format 1 is used, the value of identifier-1 or literal-1 is
divided into the value of identif ier-2 . The value of the dividend (idcntif ier-2)

is replaced by this quotient ; | similarly for identifier-1 or literal-1 and
identif ier-3 , etc.

(3) When Format 2 is used, the value of identifier-1 or literal-1 is
divided into identifier-2 or literal-2 and the result is stored in

identif ier-3, |~id¥ntifier-4 , etc,

(4) Wlien Format 3 is used, the value of identifier-1 or literal-1 is
divided by the value of identifier-2 or literal-2 and the result is stored

in identif ier-3, | identif ier-A , etc

(5) Formats 4 and 5 are used when a remainder from the division operation

is desired, namely identif ier-4 . The remainder in COBOL is defined as the

result of subtracting the product of the quotient (identif ier-3) and the
divisor from the dividend. If identif ier-3 is defined as a numeric edited
item, the quotient used to calculate the remainder is an intermediate field

which contains the unedited quotient. If ROUNDED is used, the quotient used

to calculate the remainder is an intermediate field which contains the quo-
tient of the DIVIDE statement, truncated rather than rounded.

(6) In Formats 4 and 5, the accuracy of the REMAINDER data item

(identif ier-4) is defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) will be performed for the

content of the data item referenced by identif ier-4 , as needed.

(7) Wlien the ON SIZE ERROR phrase is used in Formats 4 and 5, the follow-
ing rules pertain:

a. If the size error occurs on the quotient, no remainder calcula-
tion is meaningful. Thus, the contents of the data items referenced by both

identifier-3 and identifier-4 will remain unchanged.

b. If the size error occurs on the remainder, the contents of the

data item referenced by identifier-4 remains unchanged. However, as with
other instances of multiple results of arithmetic statements, the user will
have to do his own analysis to recognize which situation has actually
occurred.

11-62 I

Nucleus - ENTER

5.10 THE ENTER STATEMENT

5.10.1 Function

The ENTER statement provides a means of allowing the use of more than one

language in the same program.

5.10.2 General Format

ENTER language-name [routine-name] .

5. 10. 3 Syntax Rules

(1) The language-name may refer to any programming language which the
implementor specifies may be entered through COBOL. Language-name is speci-

fied by the implementor.

(2) A routine-name is a COBOL word and it may be referred to only in an
ENTER sentence.

(3) The sentence ENTER COBOL must follow the last other-language state-
ment in order to indicate to the compiler where a return to COBOL source

language takes place.

5.10.4 General Rules

(1) The other language statements are executed in the object program as if
they had been compiled into the object program following the ENTER statement.

(2) Implementors will specify, for their compilers, all details on how the
other language(s) are to be written.

(3) If the statements in the entered language cannot be written in-line,

a routine-name is given to identify the portion of the other language coding
to be executed at this point in the procedure sequence. If the other

language statements can be written in-line, routine-name is not used.

11-63

Nucleus - EXIT

5.11 THE EXIT STATEMENT

5.11.1 Function

The EXIT statement provides a coimnon end point for a series of procedures.

5.11.2 General Format

EXIT.

5.11.3 Syntax Rules ,

(1) The EXIT statement must appear in a sentence by itself.

(2) The EXIT sentence must be the only sentence in the paragraph.

5.11.4 General Rules

(1) An EXIT statement serves only to enable the user to assign a procedur
name to a given point in a program. Such an EXIT statement has no other
effect on the compilation or execution of the program.

11-64

Nucleus - GO TO

5.12 THE GO TO STATEMENT

5.12.1 Function

The GO TO statement causes control to be transferred from one part of the
Procedure Division to another.

5.12.2 General Format

Format 1

GO TO procedure-name

Format 2 ^

GO TO procedure-name-1 [, procedure-name-2] . . . , procedure-name-n

DEPENDING ON identifier

5.12.3 Syntax Rules

(1) Identifier is the name of a numeric elementary item described without
any positions to the right of the assumed decimal point.

(2) When a paragraph is referenced by an ALTER statement, that paragraph
can consist only of a paragraph header followed by a Format 1 GO TO statement.

(3) A- Format 1 GO TO statement, without procedure-name-1, can only appear
in a single statement paragraph.

(4) If a GO TO statement represented by Format 1 appears in a consecutive
sequence of imperative statements within a sentence, it must appear as the
last statement in that sequence.

5.12.4 General Rules

(1) When a GO TO statement, represented by Format 1 is executed, control

is transferred to procedure-name-1 or to another procedure-name if the GO TO
statement has been modified by an ALTER statement.

(2) If procedure-name-1 is not specified in Format 1, an ALTER statement,
referring to this GO TO statement, must be executed prior to the execution
of this GO TO statement.

(3) When a GO TO statement represented by Format 2 is executed, control is

transferred to procedure-name-1, procedure-name-2, etc., depending on the
value of the identifier being 1, 2, n. If the value of the identifier is
anything other than the positive or unsigned integers 1, 2, n, then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

11-65

Nucleus - IF

5.13 THE IF STATEMENT

5.13.1 Function

The IF statement causes a condition (see page 11-41, Conditional Expressions)
to be evaluated. The subsequent action of the object program depends on whether
the value of the condition is true or false.

5.13.2 General Format

, ^ fstatement-l | J; ELSE statement-2 (.
condition; | NEXT SENTENCE j 1; ELSE NEXT SENTENCE J

5. 13. 3 Syntax Rul es

(1) Statement-l and statement-2 represent [either [an imperative statement
or a conditional statement, and either may be followed by a conditional state-

ment .

(2) The ELSE NEXT SENTENCE phrase may be omitted if it immediately
precedes the terminal period of the sentence.

5.13.4 General Rules

(1) When an IF statement is- executed, the following transfers of control
occur:

a. If the condition is true, statement-l is executed if specified.
If statement-l contains a procedure branching [or condit jonail statement , control
is explicitly transferred in accordance with the rules of that statement. (See

page 1-103, Categories of Statements .) If statement-l does not contain a pro-
cedure branching [or conditional [statement , the ELSE phrase, if specified, is

ignored and control passes to the next executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is specified

instead of statement-l, the ELSE phrase, if specified, is ignored and control
passes to the next executable sentence.

c. If the condition is false, statement-l or its surrogate NEXT

SENTENCE is ignored, and statement-2, if specified, is executed. If statement-2
contains a procedure branching [or conditional [statement , control is explicitly

transferred in accordance with the rules of that statement. (See page 1-103,
Categories of Statements.) If statement-2 does not contain a procedure branch-

ing |ox][condTtionaIl statement , control passes to the next executable sentence.

If the ELSE stateraent-2 phrase is not specified, statement-l is ignored and
control passes to the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase is

specified, statement-l is ignored, if specified, and control passes to the
next executable sentence.

(2) Statement-l and/or statement-2 may contain an IF statement. In this
case the IF statement is said to be nested.

11-66

Nucleus - IF

IF statements within IF statements may be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE encountered

is considered to apply to the immediately preceding IF that has not been
already paired with an ELSE.

11-67

Nucleus - INSPECT

5.14 THE INSPECT STATEMENT

5.14.1 Function ■

■ \
The INSPECT statement provides the ability to tally (Format 1) , replace

(Format 2) , or tally and replace (Format 3) occurrences of single characters
or groups of characters in a data item.

5.14.2 General Format

Format 1

INSPECT identifier-1 TALLYING

identifier-2 FOR
Tall "i leading
characters
] FfBEFORE luteral-l J -^-^tIT
RS) L ̂

INITIAL

Jldentif ier- \literal-2

Format 2

INSPECT identifier-1 REPLACING

Format 3

INSPECT identifier-1 TALLYING

11-68

Nucleus - INSPECT

5.14.3 Syntax Rules

ALL FORMATS

(1) Identif ier-1 must reference either a group item or any category of ele-
mentary item, described (either implicitly or explicitly) as usage is DISPLAY.

(2) Identifier-3 . . . identif ier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either implicitly or
explicitly) as usage is DISPLAY.

(3) Each literal must be nonnumeric and may be any figurative constant,
except ALL.

(4) In Level 1, literal-1, literal-2, literal-3, literal-4 , and literal-5 ,

and the data items referenced by identifier-3, identif ier-4 , identif ier-5 ,
identif ler-6 , and identif ier-7 must be one character in length. I Except as
specifically noted in syntax and general rules, this restriction on length
does not apply to Level 2.

FORMATS 1 and 3 ONLY

(5) Identifier-2 must reference an elementary numeric data item.

(6) If either literal-1 or literal-2 is a figurative constant, the figura-
tive constant refers to an implicit one character data item.

FORMATS 2 AND 3 ONLY

(7) The size of the data referenced by literal-4 or identifier-6 must be
equal to the size of the data referenced by literal-3 or identif ier-5 . When
a figurative constant is used as literal-4, the size of the figurative
constant is equal to the size of literal-3 or the size of the data item
referenced by identif ier-5 .

(8) When the CIIAlRACTERS phrase is used, literal-4, literal-5, or the size
of the data item referenced by identifier-6, identifier-? must be one character
in length.

(9) \<Jhen a figurative constant is used as literal-3, the data referenced
by literal-4 or identifier-6 must be one character in length.

5.14.4 General Rules •

(1) Inspection (which includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism for tallying
and/or replacing) begins at the leftmost character position of the data item

referenced by identif ier-1 , regardless of its class, and proceeds from left to
right to the rightmost character position as described in general rules 4
through 6.

(2) For use in the INSPECT statement, the contents of the data item refer-

enced by identif ier-1 , identifier-3, identif ier-4 , identif ier-5 , identifier-6
or identif ier-7 will be treated as follows:

11-69

Nucleus - INSPECT

a. If any of identif ier-1 , identif ier-3, identif ier-4 , Identif ier-5 ,
identifier-6 or identif ier-7 are described as alphanumeric, the INSPECT state-

ment treats the contents of each such identifier as a character-string.

b. If any of identif ier-1 , identif ier-3 , identif ier-4 , identif ier-5 ,

identifier-6 or identif ier-7 are described as alphanumeric edited, numeric
edited or unsigned numeric, the data item is inspected as though it had been
redefined as alphanumeric (see general rule 2a) and the INSPECT statement
had been written to reference the redefined data item.

c. If any of the identif ier-1 , identif ier-3 , identif ier-4 , identi-

f ier-5, identifier-6 or identifier-? are described as signed numeric, the data
item is inspected as though it had been moved to an unsigned numeric data item
of the same length and then the rules in general rule 2b had been applied.

(See page 11-74, The MOVE Statement.)

(3) In general rules 4 through 11 all references to literal-1, literal-2,

literal-3, literal-4, and literal-5 apply equally to the contents of the data

item referenced by identif ier-3 , identif ier-4 , identif ier-5 , identifier-6,
and identif ier-7 , respectively.

(4) During inspection of the contents of the data item referenced by

identif ier-1 , each properly matched occurrence of literal-1 is tallied
(Formats 1 and 3) and/or each properly matched occurrence of literal-3 is

replaced by literal-4 (Formats 2 and 3) .

(5) The comparison operation to determine the occurrences of literal-1

to be tallied and/or occurrences of literal-3 to be replaced, occurs as follov/s:

a. The operands of the TALLYING and REPLACING phrases are considered

in the order they are specified in the INSPECT statement from left to right.

The first literal-1, literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position in the data item

referenced by identif ier-1. Literal-1, literal-3 and that portion of the
contents of the data item referenced by identif ier-1 match if, and only if,
they are equal, character for character.

b. If no match occurs in the comparison of the first literal-1,

literal-3, the comparison is repeated with each successive literal-1, literal-3,
if any, until either a match is found or there is no next successive literal-1,
literal-3. \'Jhen there is no next successive literal-1, literal-3, the char-

acter position in the data item referenced by identifier-1 immediately to the
right of the leftmost character position considered in the last comparison
cycle is considered as the leftmost character position, and the comparison

cycle begins again with the first literal-1, literal-3.

c. Whenever a match occurs, tallying and/or replacing takes place as
described in general rules 8 through 10. The character position in the data

item referenced by identifier-1 immediately to the right of the rightmost
character position that participated in the match is now considered to be the

leftmost character position of the data item referenced by identifier-1, and

the comparison cycle starts again V7ith the first literal-1, literal-3.

11-70

Nucleus - INSPECT

d. The comparison operation continues until the rightmost character

position of the data item referenced by identifier-1 has participated in a
match or has been considered as the leftmost character position. \vTien this

occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied one character

operand participates in the cycle described in paragraphs 5a through 5d above,
except that no comparison to the contents of the data item referenced by

identifier-1 takes place. This implied character is considered always to
match the leftmost character of the contents of the data item referenced by

identifier-1 participating in the current comparison cycle.

(6) The comparison operation defined in general rule 5 is affected by the
BEFORE and AFTER phrases as follows:

a. If the BEFORE or AFTER phrase is not specified, literal-1, literal-
or the implied operand of i the CHARACTERS phrase participates in the comparison
operation as described in general rule 5.

b. If the BEFORE phrase is specified, the associated literal-1,
literal-3 or the implied operand of the CHARACTERS phrase participates only
in those comparison cycles which involve that portion of the contents of the

data item referenced by identifier-1 from its leftmost character position up

to, but not including, the first occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-1. The position of this
first occurrence is determined before the first cycle of the comparison opera-

tion described in general rule 5 is begun. If, on any comparison cycle,

literal-1, literal-3 or the implied operand of the CHAR-ACTERS phrase is not
eligible to participate, it is considered not to match the contents of the

data item referenced by identifier-1. If there is no occurrence of literal-2,
literal-5 within the contents of the data item referenced by identifier-1, its
associated literal-1, literal-3, or the implied operand of the CHARACTERS
phrase participates in the comparison operation as though the BEFORE phrase
had not been specified.

c. If the AFTER phrase is specified, the associated literal-1,
literal-3 or the implied operand of the CH/vRACTERS phrase may participate only
in those comparison cycles which involve that portion of the contents of the

data item referenced by identifier-1 from the character position immediately
to the right of the rightmost character position of the first occurrence of

literal-2, literal-5 within the contents of the data item referenced by iden-

tifier-1 and the rightmost character position of the data item referenced by
identifier-1. The position of this first occurrence is determined before the
first cycle of the comparison operation described in general rule 5 is begun.

If, on any comparison cycle, literal-1, literal-3 or the implied operand of
the CHARACTERS phrase is not eligible to participate, it is considered not to

match the contents of the data item referenced by Identifier- 1 . If there is
no occurrence of literal-2, literal-5 within the contents of the data item
referenced by identifier-1, its associated literal-1, literal-3, or the
implied operand of the CHARACTERS phrase is never eligible to participate in
the comparison operation.

11-71

Nucleus - INSPECT

FORMAT 1

(7) The contents of the data item referenced by identifier-2 is not
initialized by the execution of the INSPECT statement. ^

(8) The rules for tallying are as follows:

a. If the ALL phrase is specified, the contents of the data item

referenced by identifier-2 is incremented by one (1) for each occurrence of
literal-1 matched within the contents of the data item referenced by
identif ier-1.

b. If the LEADING phrase is specified ^ the contents of the data item

referenced by identifier-2 is incremented by one (1) for each contiguous
occurrence of literal-1 matched within the contents of the data item refer-

enced by identif ier-1 , provided that the leftmost such occurrence is at the

point where comparison be^an in the first comparison cycle in which literal-1
was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the data

item referenced by identifier-2 is incremented by one (1) for each character
matched, in the sense of general rule 5e, within the contents of the data

item referenced by identif ier-1 .

FORMAT 2

(9) The required words ALL, LEADING, and FIRST are adjectives | that apply
to each succeeding BY phrase until the next adjective appears.

(10) The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character matched,
in the sense of general rule 5e, in the contents of the data item referenced

by identif ier-1 is replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of literal-3
matched in the contents of the data item referenced by identifier-1 is replaced
by literal-4.

c. When the adjective LEADING is specified, each contiguous occurrence

of literal-3 matched in the contents of the data item referenced by identifier-1
is replaced by literal-4, provided that the leftmost occurrence is at the point
where comparison began in the first comparison cycle in which literal-1 was
eligible to participate.

d. When the adjective FIRST is specified, the leftmost occurrence of

literal-3 matched within the contents of the data item referenced by
identifier-1 is replaced by literal-4.

FORMAT 3

(11) A Format 3 INSPECT statement is interpreted and executed as though two
successive INSPECT statements specifying the same identifier-1 had been written
with one statement being a Format 1 statement with TALLYING phrases identical

11-72

Nucleus - INSPECT

to those specified in the Format 3 statement, and the other statement being a
Format 2 statement with REPLACING phrases identical to those specified in the

Format 3 statement. The general rules given for matching and counting apply

to the Format 1 statement and the general rules given for matching and replac-

ing apply to the Format 2 statement.

5.14.5 Examples

Following are six examples of the INSPECT statement:

INSPECT word TALLYING, count FOR LEADING "L" BEFORE INITIAL "A", count-1 FOR
LEADING "A" BEFORE INITIAL "L" .

Where word = LARGE, count = 1, count-1 = 0.

Where word = ANALYST, count '= 0, count-1 =1..

INSPECT word TALLYING count FOR ALL "L" , REPLACING LEADING "A" BY "E" AFTER

INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1, word = SALEMI.
Where word = LATTER, count = 1, word = LETTER.

INPSECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J" REPLACING ALL
"A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.

Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q" AFTER INITIAL "R'

Where word = RXXBQWY, word = RYYZQQY.
Where word = YZACDWBR, word = YZACDWZR.
Where word = RAWRXEB, word = RAQRYEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

word before: 12 XZABCD

word after: BBBBBABCD

11-73

Nucleus - MOVE

5.15 THE MOVE STATEMENT

5.15.1 Function ■

The MOVE statement transfers data, in accordance with the rules of editing,
to one or more data areas.

5.15.2 General Format

Format 1

MOVE { identifier- ij . , o f -j o1

literal (1^ i^^^tifier-2 [
, identif ier-3 J ...

Format 2

I
^n^yr^ CORRESPONDING) ,rp^.^ o
MOVE i / identifier-1 TO identifier-2

I L.UKK !

5.15.3 Syntax Rules

(1) Identif ier-1 and literal represent the sending area; identifier-2,
identif ier-3 5 represent the receiving area.

(2) CORR is an abbreviation for CORRESPONDING.

(3) When the CORRESPONDING phrase is used, both identifiers must be group
items .

(4) An index data item cannot appear as an operand of a MOVE statement.

(See page III-5, The USAGE Clause.)

5.15.4 General Rules

(1) If the CORRESPONDING phrase is used, selected items within identifier-1

are moved to selected items within identifier-2, according to the rules given
in paragraph 5.3.3, The CORRESPONDING Phrase, on page 11-51. The results are
the same as if the user had referred to each pair of corresponding identifiers
in separate MOVE statements.

(2) The data designated by the literal or identifier-1 is moved first to

identifier-2, then to identif ier-3, The rules referring to identifier-2
also apply to the other receiving areas. Any subscripting or indexing associ-

ated with identifier-2, is evaluated immediately before the data is moved
to the respective data item.

Any subscripting or indexing associated with identifler-1 is evaluated
only once, immediately before data is moved to the first of the receiving
operands. The result of the statement

MOVE a (b) TO b, c (b)

11-74

Nucleus - MOVE

is equivalent to:

MOVE a (b) TO temp

MOVE temp TO b
MOVE temp TO c (b)

where 'temp' is an intermediate result item provided by the implementor.

(3) Any MOVE in which the sending and receiving items are both elementary

items is an elementary move. Every elementary item belongs to one of the fol-

lowing categories: numeric, alphabetic, alphanumeric, numeric edited, alpha-
numeric edited. These categories are described in the PICTURE clause.

Numeric literals beloijg to the category numeric, and nonnuraeric literals
belong to the category alphanumeric. The figurative constant ZERO belongs to
the category numeric. The figurative constant SPACE belongs to the category
alphabetic. All other figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between these
categories :

a. The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item must not be moved to a numeric or numeric
edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data

item or a numeric edited data item must not be moved to an alphabetic data
item.

c. A non-integer numeric literal or a non-integer numeric data item
must not be moved to an alphanumeric or alphanumeric edited data item.

d. All other elementary moves are legal and are performed according
to the rules given in general rule 4.

(A) Any necessary conversion of data from one form of internal representa-
tion to another takes place during legal elementary moves , along with any

editing specified for the receiving data item:

a. When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place as defined under

Standard Alignment Rules on page 1-86. If the size of the sending item is
greater than the size of the receiving item, the excess characters are trun-

cated on the right after the receiving item is filled. If the sending item
is described as being signed numeric, the operational sign v/ill not be moved;

if the- operational sign occupied a separate character position (see page 11-31,
The SIGN Clause) , that character will not be moved and the size of the sending
item will be considered to be one less than its actual size (in terms of
standard data format characters) .

b. When a numeric or numeric edited item is the receiving item,

alignment by decimal point and any necessary zero-filling takes place as
defined under the Standard Alignment Rules on page 1-86, except where zeroes
are replaced because of editing requirements.

11-75

Nucleus - MOVE

1. When a signed numeric item is the receiving item, the sign of

the sending item is placed in the receiving item. (See page 11-31, The SIGN
Clause) . Conversion of the representation of the sign takes place as neces-

sary. If the sending item is unsigned, a positive sign is generated for the
receiving item.

2. When an unsigned numeric item is the receiving item, the

absolute value of the sending item is moved and no operationa]. sign is gener-
ated for the receiving item.

3. When a data item described as alphanumeric is the sending item,
data is moved as if the sending item were described as an unsigned numeric
integer.

c. When a receiving field is described as alphabetic, justification

and any necessary space-filling takes place as defined under the Standard Align-

ment Rules on page 1-86. ̂ f the size of the sending item is greater than the
size of the receiving item, the excess characters are truncated on the right
after the receiving item is filled.

(5) Any move that is not an elementary move is treated exactly as if it
were an alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal representation to another. In

such a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or

receiving area, except as noted in general rule 4 of the OCCURS clause (see

page III-4)

(6) Data in the following chart summarizes the legality of the various
types of MOVE statements. The general rule reference indicates the rule that
prohibits the move or the behavior of a legal move.

CATEGORY OF
SENDING

DATA ITEM

CATEGORY OF RECEIVING DATA ITEM

ALPHABETIC ALPHANUMERIC EDITED
ALPHANUMERIC

NUMERIC INTEGER

NUMERIC NON-INTEGER
NUMERIC EDITED

ALPHABETIC Yes/4c Yes/4a No/3a

ALPHANUMERIC Yes/4c Yes/4a Yes /4b

ALPHANUMERIC EDITED Yes/4c Yes/ 4a No/3a

NUMERIC
INTEGER No/3b Yes/4a Yes /4b

NON- INTEGER No/3b No/3c Yes/4b

NUMERIC EDITED No/ 3b Yes/4a No/3a

II- 75

Nucleus - MULTIPLY

5.16 THE MULTIPLY STATEMENT

5.16.1 Function

The MULTIPLY statement causes numeric data items to be multiplied and sets
the values of data items equal to the results.

5.16.2 General Format

Format 1

MULTIPLY identifier-!^
literal-1

identif ier-3
[rounded]

BY identifier-2 [ROUND Ed]

[; ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY identif ier-1
literal-1

('identifier-2^
—)^literal-2

GIVING identif ier-3 [ROUNDED

, identifier-4 [ROUND ED] J ... ̂ ; ON SIZE ERROR imperative-statement]

5.16.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item, except that

in Format 2 each identifier following the vvrord GIVING must refer to either an
elementary numeric item or an elementary numeric edited item.

(2) Each literal must be a numeric literal.

(3) The composite of operands, which is that hypothetical data item

resulting from the superimposition of all receiving data items of a given
statement aligned on their decimal points, must not contain more than eighteen
(18) digits.

5.16.4 General Rules

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase;
page 11-51, The Arithmetic Statements; page 11-51, Overlapping Operands ;| and
page 11-51, Multiple Results in Arithmetic Statements.

(2) When Format 1 is used, the value of identif ier-1 or literal-1 is
multiplied by the value of identifier-2. The value of the multiplier
(identifier-2) is replaced by this product;
literal-1 and identif ier-3, etc. I

similarly for identifier-1 or

(3) When Format 2 is used, the value of identifier-1 or literal-1 is
multiplied by identifier-2 or literal-2 and the result is stored in
identif ier-3 , identifier-4, etc,

11-77

Nucleus - PERFORM

5.17 THE PERFORM STATEMENT

5.17.1 Function

The PERFORM statement is used to transfer control explicitly to one or more

procedures and to return control implicitly whenever execution of the specified
procedure is complete.

5.17.2 General Format

Format 1

PERFORM procedure-name- 1

Format 2

PERFORM procedure-name- 1

(THROUGH^

I THRU j procedure-name-2

(through) , „ 1 fidentifier-l) ^Trr— \ procedure-name-2 ^ }
(THRU \^integer-l \

TIMES

Format 3

PERFORM procedure-name- 1

Format A

PERFOR^I procedure-name- 1

identif ier-2 ̂

THROUGH
THRU

procedure-name-2
UNTIL condition- 1

THROUGH"^

THRU j

(procedure-name-2

VARYING
index-name- 1 Tidentif ier-3' FROM •< index-name- 2

lliteral-1

„^ , identifxer-4] tttvittt j-*.- i
BY S,.^ TO f UNTIL condition- 1 — literal-2

i. , ̂ .r. _r\ (identifier-6 Identifier^ ̂ ^^^ ■(index-name-4 index-name-3j [iiteral-3 „

BY (identifier-7| ̂ ^^^
— l^literal-4 J

AFTER identif ier-8
index-name-5

BY identif ier- 10

literal-6

lit ion- 2

identif ier-9
FROM S index-name-6i

_literal-5

UNTIL condition-3

11-78

Nucleus - PERFORIN

5.17.3 Syntax Rules

(1) Each identifier represents a numeric elementary item described in the

Data Division. In Format 2, identifier-1 must be described as a numeric
integer.

(2) Each literal represents a numeric literal.

(3) The words THRU and THROUGH are equivalent.

(4) If an index-name is specified in the VARYING or AFTER phrase, then:

a. The identifier in the associated FROM and BY phrases must be an

integer data item.

ft

h. The literal in the associated FROM phrase must be a positive

integer.

c. The literal in the associated BY phrase must be a non-zero integer,

(5) If an index-name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING or AFTER phrase must be

an integer data item.

b. The identifier in the associated BY phrase must be an integer
data item.

c. The literal in the associated BY phrase must be an integer.

(6) Literal in the BY phrase must not be zero.

(7) Condition-1, condition-2, condition-3 may be any conditional express-
ion as described on page 11-41, Conditional Expressions.

(8) Where procedure-name- 1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of the program

then both must be procedure-names in the same declarative section.

5.17.4 General Rules

(1) The data items referenced by identif ier-4, identif ier-7 , and identi-
fier-10 must not have a zero value.

(2) If an index-name is specified in the VARYING or AFTER phrase, and an
identifier is specified in the associated FROM phrase, then the data item
referenced by the identifier must have a positive value.

(3) When the PERFORM statement is executed, control is transferred to the

first statement of the procedure named procedure-name-1 (except as indicated
in general rules 6b, 6c, and 6d) . This transfer of control occurs only once
for each execution of a PER.FORM statement. For those cases where a transfer

of control to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM statement is
established as follows:

11-79

Nucleus - PERFORM

a. If procedure-name- 1 is a paragraph-name and procedure-name-2 is
not specified, then the return is after the last statement of procedure-name- 1 .

b. If procedure-name- 1 is a section-name and procedure-name-2 is not
specified, then the return is after the last statement of the last paragraph

in procedure-name- 1 .

c. If procedure-name-2 is specified and it is a paragraph-name, then
the return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name, then
the return is after the last statement of the last paragraph in the section.

(4) There is no necessary relationship between procedure-name- 1 and

procedure-name-2 except that a consecutive sequence of operations is to be

executed beginning at the procedure named procedure-name- 1 and ending with
the execution of the procedure named procedure-name-2. In particular, GO TO

and PERFORM statements may occur between procedure-name- 1 and the end of
procedure-name-2. If there are two or more logical paths to the return point,

then procedure-name-2 may be the name of a paragraph consisting of the EXIT
statement, to which all of these paths must lead.

(5) If control passes to these procedures by means other than a PERFORM

statement, control will pass through the last statement of the procedure to
the next executable statement as if no PERFORM statement mentioned these

procedures .

(6) The PERF0R14 statements operate as follows with rule 5 above applying
to all formats:

a. Format 1 is the basic PERFORM statement. A procedure referenced

by this type of PERFORM statement is executed once and then control passes
to the next executable statement following the PERFORM statement.

b. Format 2 is the PERFORM. .. TIMES . The procedures are performed the

number of times specified by integer-1 or by the initial value of the data item
referenced by identifier-1 for that execution. If, at the time of execution of

a PERFORM statement, the value of the data item referenced by identifier-1 is
equal to zero or is negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the procedures
the specified number of times, control is transferred to the next executable
statement following the PERFORM statement.

During execution of the PERFORM statement, references to identi-
fier-1 cannot alter the number of times the procedures are to be executed from

that which was indicated by the initial value of identifier-1.

c. Format 3 is the PERFORM. .. UNTIL. The specified procedures are

performed until the condition specified by the UNTIL phrase is true. \^en the
condition is true, control is transferred to the next executable statement

after the PERFORM statement. If the condition is true when the PERFORM state-

ment is entered, no transfer to procedure-name- 1 takes place, and control is
passed to the next executable statement following the PERFORM statement .

11-80

Nucleus - PERFORM

d. Format 4 is the PERFORM. .. VARYING. This variation of the PERFORM

statement is used to augment the values referenced by one or more identifiers

or index-names in an orderly fashion during the execution of a PERFORM state-
ment. In the following discussion, every reference to identifier as the

object of the VARYING, AFTER and FROM (current value) phrases also refers to

index-names. When index-name appears in a VARYING and/or AFTER phrase, it is
initialized and subsequently augmented (as described below) according to the

rules of the SET statement. Wlien index-name appears in the FROM phrase,
identifier, when it appears in an associated VARYING or AFTER phrase, is

initialized according to the rules of the SET statement; subsequent augmenta-
tion is as described below.

In Format 4, when one identifier is varied, identifier-2 is set to
the value of literal-1 or the current value of identifier-3 at the point of
initial execution of the PERFORM statement; then, if the condition of the UNTIL

phrase is false, the sequence of procedures, procedure-name- 1 through procedure-
name-2, is executed once. The value of identifier-2 is augmented by the
specified increment or decrement value (the value of identifier-4 or literal-2)

and condition-1 is evaluated again. The cycle continued until this condition
is true; at which point, control is transferred to the next executable state-

ment following the PERFORM statement. If condition-1 is true at the beginning
of execution of the PERFORM statement, control is transferred to the next

executable statement following the PERFORM statement.

ENTRANCE

 _^

Set identifier-2 equal to
current FROM value

^ Condition-1^ '^^^ ^ Exit False

Execute proc

THRU proced
edure-name-1
ure-name-2

Augment identifier-2 with
current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having One Condition

II~81

Nualeus - PERFORM

I.

In Format 4 , when two identifiers are varied, identifier-2 and

identifier-5 are set to the current value of identifier-3 and identif ier-6 ,

respectively. After the identifiers have been set, condition-1 is evaluated;
if true, control is transferred to the next executable statement; if false,

condition-2 is evaluated. If condition-2 is false, procedure-name- 1 through
procedure-name-2 is executed once, then identifier-5 is augmented by identi-

fier-? or literal-4 and condition-2 is evaluated again. This cycle of
evaluation and augmentation continues until this condition is true. When

condition-2 is true, identifier-5 is set to the value of literal-3 or the

current value of identif ier-6 , identifier-2 is augmented by identif ier-4 and
condition-1 is re-evaluated. The PERFORM statt/ment is completed if condition-1

is true; if not, the cycles continue until condition-1 is true.

During the execution of the procedures associated with the PERFORM

statement, any change to the VARYING variable (identifier-2 and index-name- 1) ,
the BY variable (identif ier-4) , the AFTER variable (identifier-5 and index-

name-3) , or the FROM variable (identifier-3 and index-name-2) will be taken
into consideration and will affect the operation of the PERFORM statement.

ENTRANCE

Set identifier-2 and identifier-5
to current FROM values

Condition-1

False

Condition-2

False

Execute procedure-name- 1
THRU procedure-name-2

i

Augment identifier-5 with
current BY value

-True

■*Exit

True

Set identifier-5 to its
current FROM value

Augment identifier-2 with
current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two Conditions

At the termination of the PERFORM statement identifier-5 contains
the current value of identif ier-6 . Identifier-2 has a value that exceeds the

last used setting by an increment or decrement value, unless condition-1 was
true when the PERFORM statement was entered, in which case identifier-2
contains the current value of identifier-3.

When two identifiers are varied, identifier-5 goes through a

complete cycle (FROM, BY, UNTIL) each tiuo i ..i-.tifler-2 is varied.

11-82

Nucleus - PERFORM

For three identifiers the mechanism is the same as for two identi-

fiers except that identifier-8 goes through a complete cycle each time that

identifier-5 is augmented by identifier-'/ or literal-4, which in turn goes
through a complete cycle each time identifier-2 is varied.

ENTRANCE

Set

identifier-2, identifier-5,

identifier-8
to current FROM values

^ Condition-1

Trug

Exit

False

Condition-2
True

False

Condition-3 Tr^e

False

Execute

procedure-name-1
THRU procedure-

name- 2

Set

identifier-8
to its current
FROM value

id.

Set

identifier-5
to its current
FROM value

Augment
identifier-8
with current

BY value

Augment
identifier-5
with current

BY value

 i^.

Augment
identifier-2 with current
BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having Three Conditions.

After the completion of a Format 4 PERFORM statement, identifier-5
and identifier-8 contain the current value of identifier-6 and identifier-9

respectively. Identifier-2 has a value that exceeds its last used setting by
one increment or decrement value, unless condition-1 is true when the PERFORM
statement is entered, in which case identifier-2 contains the current value of
identif ier-3 .

TT-ft'^

Nucleus - PERFOm^

(7) If a sequence of statements referred to by a PERFORM statement includes
another PERFORM statement, the sequence of procedures associated with the

included PERFORM must itself either be totally included in, or totally excluded
from, the logical sequence referred to by the first PERFORM. Thus, an active
PERFORM statement, whose execution point begins within the range of another
active PERFORM statement, must not allow control to pass to the exit of the
other active PERFORM statement; furthermore, two or more such active PERFORM

statements may not have a common exit. See the illustration below.

X PERFOPvM a THRU m

a '

J

m

d PERFORM f THRU j

f

X PERFORM a THRU m

a d PERFORM f THRU j

h

m

f

j

X PERFORM a THRU m

a

f

ra

d PERFORM f THRU j

(8) A PERFORM statement that appears in a section that is not in an inde-
pendent segment can have within its range, in addition to any declarative

sections whose execution is caused within that range, only one of the following

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in a single independent
segment .

(9) A Perform statement that appears in an independent segment can have

within its range, in addition to any declarative sections whose execution is
caused within that range, only one of the following:

a. Sections and /or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement.

11-84

Nucleus - STOP

5.18 THE STOP STATEMENT

5.18.1 Function !

The STOP statement causes a permanent or temporary suspension of the

execution of the object program.

5.18.2 General Format

^ {If e.al]

5.18.3 Syntax Rules

(1) The literal may be numeric or nonnumeric or may be any figurative

constant, except ALL. j

(2) If the literal is numeric, then it must be an unsigned integer.

(3) If a STOP RUN statement appears in a consecutive sequence of impera-
tive statements within a sentence, it must appear as the last statement in

that sequence.

5.18.4 General Rules

(1) If the RUN phrase is used, then the ending procedure established by
the installation and/or the compiler is instituted.

(2) If STOP literal is specified, the literal is communicated to the

operator. Continuation of the object program begins with the execution of
the next executable statement in sequence.

11-85

Nucleus - STRING

5.19 THE STRING STATEMENT

5.19.1 Function

The STRING statement provides juxtaposition of the partial or complete
contents of two or more data items into a single data item.

5.19.2 General Format

fidentif icr-l STRING

[literal-l

fidentif ier-4

' lliteral-4

, identifier-2

, literal~2

, identifier-5

, literal-5

fidentif ier-3

DELIMITED BY ̂ literal-3

[SIZE

identif ier-6l

DELIMITED BY { literal-6
SIZE

INTO identifier-7 [WITH POINTER identlfier-8

[; ON OVERFLOW imperative-statement]

5.19.3 Syntax Rules

ALL.
(1) Each literal may be any figurative constant without the optional word

(2) All literals must be described as nonnumeric literals, and all identi-

fiers, except identif ier-8 , must be described implicitly or explicitly as
usage is DISPLAY.

(3) Identifier-7 must represent an elementary alphanumeric data item with-
out editing symbols or the JUSTIFIED clause.

(4) Identif ier-8 must represent an elementary numeric integer data item
of sufficient size to contain a value equal to the size plus 1 of the area

referenced by identifier-7. The symbol 'P' may not be used in the PICTURE
character-string of identif ier-8.

(5) Wiere identif ier-1 , identifier-2, or identifier-3 is an elementary

numeric data item,' it must be described as an integer without the symbol 'P'
in its PICTURE character-string.

5.19.4 General Rules

(1) All refc>,rcnces to i denti f ier- 1 , ldt;ntif icr-2 , identif i er-3 , litcral-1,

litc'i-al-2, literal -3 apply e(|u,illy to identif ier-4 , i dentlf ier-3 , identif J er-6 ,
litcral-4, literal-5 and literai-6, respectively, and all recursions thereof.

(2) Identif ier-1 , literal-1, ident J.f i cr-2 , literal-2, represent the
sending items. Identifier-7 represents tlie receiving item.

(3) Literal-3, identif:! er-3, indica^:e the character(s) delimiting the move.
If the SIZE phrase is used, the complete dat.,- item defined by identif ier-1 ,

11-86

Nucleus - STRING

literal-1, identif ier-2 , literal-2, is moved. I-Jhen a figurative constant is
used as the delimiter, it stands for a single character nonnumeric literal.

(4) When a figurative constant is specified as literal-1, literal-2,
literal-3, it refers to an implicit one character data item whose usage is
DISPLAY.

(5) Mien the STRING statement is executed, the transfer of data is

governed by the following rules:

a. Those characters from literal-1, literal-2, or from the contents

of the data item referenced by identif ier-1 , identif ier-2 , are transferred to
the contents of identifier-7 in accordance with the rules for alphanumeric to

alphanumeric moves, except that no space-filling will be provided. (See page
11-74, The MOVE Statement.)

b. If the DELIMITED phrase is specified without the SIZE phrase, the

contents of the data item referenced by identif ier-1 , identif ier-2 , or the
value of literal-1, literal-2, are transferred to the receiving data item in
the sequence specified in the STRING statement beginning with the leftmost
character and continuing from left to right until the end of the data item

is reached, or until the character (s) specified by literal-3, or by the
contents of identif ier-3 are encountered. The character (s) specified by
literal-3 or by the data item referenced by identifier-3 are not transferred.

c. If the DELIMITED phrase is specified with the SIZE phrase, the

entire contents of literal-1, literal-2, or the contents of the data item

referenced by identif ier-1 , identif ier~2 , are transferred, in the sequence
specified in the STRING statement, to the data item referenced by identifier-7
until all data has been transferred or the end of the data item referenced by

identifier-7 has been reached.

(6) If the POINTER phrase is specified, identifier-8 is explicitly avail-
able to the programmer, and he is responsible for setting its initial value.

The initial value must not be less than one.

(7) If the POINTER phrase is not specified, the following general rules

apply as if the user had specified identifier-8 with an initial value of 1.

(8) When characters are transferred to the data itera referenced by

identifier-7, the moves behave as though the characters were moved one at a
tim.e from the source into the character position of the data item referenced

by identifier-7 designated by the value associated with identifier-8, and then
identifier-8 was increased by one prior to the move of the next character.
The value associated with identifier-8 is changed during execution of the
STRING statement only by the behavior specified above.

(9) At the end of execution of the STRING statement, only the portion of

the data item referenced by identifier-7 that was referenced during the execu-
tion of the STRING statement is changed. All other portions of the data item

referenced by identifier-7 will contain data that was present before this
execution of the STRING statement.

11-87

Nualeus - STRING

(10) If at any point at or after initialization of the STRING statement,

but before execution of the STRING statement is completed, the value associ-
ated with identifier-8 is either less than one or exceeds the number of

character positions in the data item referenced by identlf ier-7 , no (further)
data is transferred to the data item referenced by identif ier-7 , and the
imperative statement in the ON OVERFLOW phrase is executed, if specified.

(11) If the ON OVERFLOW phrase is not specified when the conditions
described in general rule 10 above are encountered, control is transferred to
the next executable statement.

Tl-88

Nucleus - SUBTRACT

5.20 THE SUBTRACT STATEMENT

5.20.1 Function

The SUBTRACT statement is used to subtract one, or the sum of two or more,
numeric data items from one or more items, and set the values of one or more

items equal to the results.

5.20.2 General Format

Format 1

SUBTRACT identif ier-1

literal-1
, identifier-2

, literal-2
FROM identifier-m [ROUNDEdI

[, identif ier-n [ROUNDED] . . . [; ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT identif ier-1

literal-1
, identifier-2

, literal-2

FROM
identifier-m

literal-m

GIVING identifier-n [ROUNDED] , identifier-o [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT [corresponding^
1 CORR identifier-1 FROM identifier-2 ^

ROUNDED

[; ON SIZE ERROR imperative-statement]

5.20.3 Syntax Rules

(1) Each identifier must refer to a numeric elementary item except that:

a. In Format 2, each identifier following the word GIVING must refer

to either an elementary numeric item or an elementary numeric edited item.

b. In Format 3, where each identifier must refer to a group item,

(2) Each literal must be a numeric literal.

(3) The composite of operands must not contain more than 18 digits. (See

page 11-51, The Arithmetic Statements.)

a. In Format 1 the composite of operands is determined by using all
of the operands in a given statement.

11-89

Nucleus - SUBTRACT

b. In Format 2 the composite of operands is determined by using all
of the operands in a given statement excluding the data items that follow the
word GIVING. !

c. In Format 3 the composite of operands is determined separately for
each pair of corresponding data items.

(4) CORR is an abbreviation for CORRESPONDING,

5.20.4 General Rules

(1) See page 11-50, The ROUNDED Phrase; page 11-50, The SIZE ERROR Phrase;
page 11-51, The CORRESPONDING Phrase; page 11-51, The Arithmetic Statement;

page 11-51, Overlapping Operands ; [and page 11-51, Multiple Results in Arith-
I metic Statements

(2) In Format 1, all literals or identifiers preceding the word FROM are

added together and this total is subtracted from the current value of identi-

fler-m storing the result immediately into identlf ier-m, | and repeating this
j process respectively for each operand following the word FROM.

(3) In Format 2, all literals or identifiers preceding the word FROM are

added together, the sum is subtracted from literal-m or identifier-ra and the
result of the subtraction is stored as the new value of identif ier-n,
Identif ier-o , etc.

(4) If Format 3 is used, data items in identif ier-1 are subtracted from

and stored into corresponding data items in identif ier-2 .

(5) The compiler insures enough places are carried so as not to lose
significant digits during execution.

11-90

Nualeus - UNSTRING

5.21 THE UNSTRING STATEMENT

5.21.1 Function

The UNSTRING statement causes contiguous data in a sending field to be

separated and placed into multiple receiving fields.

5.21.2 General Format

UNSTRING identifier-1

r 1 , f identif ier-2l ^„ r.-r-rT (identif ier-s)
DELIMITED BY | ALL 1 I, . ^ ^ , [, OR ALL M , _ . ̂ \

 [J \literal-l J — L -i Lliteral-2 J

INTO identifier-4 [, DELIMITER IN identif ier-s] [, COUNT IN identif ier-6]

[, identifier-7 [, DELIMITER IN identif ier-s] [, COUNT IN identif ier-9] j .

[with pointer identifier- lO] [TALLYING IN identif ier-ll]

[; ON OVERFLOW imperative-statement]

5.21.3 Syntax Rules

(1) Each literal must be a nonnumeric literal. In addition, each literal

may be any figurative constant without the optional word ALL.

(2) Identifier-1, identif ier-2 , identif ier-3 , identif ier-5 , and identi-
fier-8 must be described, implicitly or explicitly, as an alphanumeric data
item.

(3) Identifier-4 and identifier-7 may be described as either alphabetic

(except that the symbol 'B' may not be used in the PICTURE character-string),
alphanumeric, or numeric (except that the symbol 'P' may not be used in the
PICTURE character-string), and must be described as usage is DISPLAY.

(4) Identif ier-6 , identifier-9, identif ier-10 , and identif ier-ll must be

described as elementary numeric integer data items (except that the symbol 'P'
may not be used in the PICTURE character-string).

(5) No identifier may name a level 88 entry.

(6) - The DELIMITER IN phrase and the COUNT IN phrase may be specified only
if the DELIMITED BY phrase is specified.

5.21.4 General Rules

(1) All references to identif ier-2 , literal-1, identifier-4, identifier-5
and identif ier-6 , apply equally to identif ier-3 , literal~2, identifier-7,
identif ier-8 and identifier-9, respectively, and all recursions thereof.

(2) Identifier-1 represents :lie ̂ ^'^nding area.

Nucleus - UNSTRING

(3) Identifier-4 represents the data receiving area. Identifier-5
represents the receiving area for delimiters.

(4) Literal- 1 or the data item referenced by identifier-2 specifies a ^
delimiter.

(5) Identifier-6 represents the count of the number of characters within
the data item referenced by identifier-1 isolated by the delimiters for the
move to identif ier~4 . This value does not include a count of the delimiter
character (s) .

(6) The data item referenced by identif ier-10 contains a value that indi-
cates a relative character position within the area defined by identifier-1.

(7) The data item referenced by identif ier-11 is a counter that records
the number of data items acted upon during the execution of an UNSTRING
statement.

(8) When a figurative constant is used as the delimiter, it stands for a
single character nonnumeric literal.

l\rhen the ALL phrase is specified, one occurrence or two or more

contiguous occurrences of literal-1 (figurative constant or not) or the
contents of the data item referenced by identifier-2 are treated as if it
were only one occurrence, and this occurrence is moved to the receiving data
item according to the rules in general rule 13d.

(9) When any examination encounters two contiguous delimiters, the current

receiving area is either space or zero filled according to the description of
the receiving area.

(10) Literal-1 or the contents of the data item referenced by identifier-2

can contain any character in the computer's character set.

(11) Each literal-1 or the data item referenced by identifier-2 represents
one delimiter. Wien a delimiter contains two or more characters, all of the

characters must be present in contiguous positions of the sending item, and

in the order given to be recognized as a delimiter.

(12) When two or more delimiters are specified in the DELIMITED BY phrase,

an 'OR' condition exists between them. Each delimiter is compared to the
sending field. If a match occurs, the character(s) in the sending field is

considered to be a single delimiter. No character (s) in the sending field

can be- considered a part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence
specified in the UNSTRING statement.

(13) When the UNSTRING statement is initiated, the current receiving area

is the data item referenced by identifier-4. Data is transferred from the
data item referenced by identifier-1 to the data item referenced by identifier-4
according to the following rules:

11-92

Nucleus - UNSTRING

a. If the POINTER phrase is specified, the string of characters refer-

enced by identifier-1 is examined beginning with the relative character posi-
tion indicated by the contents of the data item referenced by identif ier-10 .

If the POINTER phrase is not specified, the string of characters is examined

beginning with the leftmost character position.

b. If the DELIMITED BY phrase is specified, the examination proceeds

left to right until either a delimiter specified by the value of literal-1 or
the data item referenced by identif ier-2 is encountered. (See general rule
11.) If the DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the current receiving area. However, if the

sign of the receiving item is defined as occupying a separate character posi-
tion, the number of characters examined is one less than the size of the

current receiving area.

If the end of the data item referenced by identifier-1 is
encountered before the delimiting condition is met, the examination terminates
with the last character examined.

c. The characters thus examined (excluding the delimiting character (s) ,
if any) are treated as an elementary alphanumeric data item, and are moved
into the current receiving area according to the rules for the MOVE statement.

(See page 11-74, Tne MOVE Statement.)

d. If the DELIMITER IN phrase is specified, the delimiting character(s) j

are treated as an elementary alphanumeric data item and are moved into the j
data item referenced by identifier-5 according to the rules for the MOVE j
statement. (See page II-7A, The MOVE Statement.) If the delimiting condition i

is the end of the data item referenced by identifier-1, then the data item |
referenced by identifier-5 is space-filled. I

e. If the COUNT IN phrase is specified, a value equal to the number I

of characters thus examined (excluding the delimiter character (s) , if any) is i

moved into the area referenced by identifier-6 according to the rules for an]
elementary move. i

f. If the DELIMITED BY phrase is specified, the string of characters j

is further examined beginning with the first character to the right of the '
delimiter. If the DELIMITED BY phrase is not specified, the string of charac- j
ters is further examined beginning with the character to the right of the
last character transferred.

g. After data'is transferred to the data item referenced by identi-
fier-4-, the current receiving area is the data item referenced by identifier-?.
The behavior described in paragraph 13b through 13f is repeated until either

all the characters are exhausted in the data item referenced by identifier-1,
or until there are no more receiving areas.

(14) The initialization of the contents of the data items associated with

the POINTER phrase or the TALLYING phrase is the responsibility of the user.

(15) The contents of the data item referenced by identif ier-10 will be
incremented by one for each character examined in the data item referenced by
identifier-1. When the execution of an UNSTRING statement with a POINTER

11-93

Nucleus - UNSTBING

phrase is completed, the contents of the data item referenced by identifier- 10
will contain a value equal to the initial value plus the number of characters

examined in the data item referenced by identif ier-1 .

(16) \^en the execution of an UNSTRING statement with a TALLYING phrase is

completed, the contents of the data item referenced by identif ier-1 1 contains
a value equal to its initial value plus the number of data receiving items
acted upon.

(17) Either of the following situations causes an overflow condition:

a. An UNSTRING is initiated, and the value in the data item referenced

by identif ier- 10 is less than 1 or greater than the size of the data item

referenced by identif ier-1 .

b. If, during execution of an UNSTRING statement, all data receiving

areas have been acted upoi^, and the data item referenced by identifier- 1
contains characters that have not been examined.

(18) When an overflow condition exists, the UNSTRING operation is terminated.
If an ON OVERFLOW phrase has been specified, the imperative statement included

in the ON OVERFLOW phrase is executed. If the ON OVERFLOW phrase is not speci-
fied, control is transferred to the next executable statement.

(19) The evaluation of subscripting and indexing for the identifiers is as
follovjs:

a. Any subscripting or indexing associated with identif ier-1 ,
identif ier-lO , identif ier-11 is evaluated only once, immediately before any
data is transferred as the result of the execution of the UNSTRING statement.

b. Any subscripting or indexing associated with identif ier-2 ,
identif ier-3 , identif ier-4 , identif ier-5 , identif ier-6 is evaluated immediately
before the transfer of data into the respective data item.

11-94

Table Handling - Introduction

1. INTRODUCTION TO THE TABLE HANDLING MODULE

1.1 FUNCTION

The Table Handling module provides a capability for defining tables of
contiguous data items and accessing an item relative to its position in the
table. Language facility is provided for specifying how many times an item
is to be repeated. Each item may be identified through use of a subscript

or an index (see page 1-89) .

1.2 LEVEL CHARACTERISTICS

Table Handling Level 1 provides a capability for accessing items in up to

three-dimensional fixed length tables. This level also provides series options
and the ability to vary the contents of indices by an increment or decrement.

Table Handling Level 2 provides a capability for accessing items in up to

three-dimensional variable length tables. This level also provides the addi-
tional facilities for specifying ascending or descending keys and permits

searching a dimension of a table for an item satisfying a specified condition.

III-l

Table Handling - OCCURS

2. DATA DIVISION IN THE TABLE HANDLING MODULE

2.1 THE OCCURS CLAUSE

2.1.1 Function

The OCCURS clause eliminates the need for separate entries for repeated

data items and supplies information required for the application of subscripts
or indices.

2.1.2 General Format

Fo rma t 1

OCCURS integer-2 TIMES

fASCENDING
DESCENDING KEY IS dat|a-name-2 [, data-name-S]

[INDEXED BY index-name- 1 [, index-name-2] . . .]

Format 2

OCCURS integer- 1 TO integer-2 TIMES DEPENDING ON data-name- 1

"ASCENDING '
DESCENDING KEY IS data-name-2 [, data-name-s] ...

[INDEXED BY index-name- 1 [, index-name-2] ...]

2.1.3 Syntax Rules

(1) Where both integer-1 and integer-2 are used, the value of integer-1
must be less than the value of integer-2.

(2) The data description of data-name-1 must describe a positive integer.

(3) Data-name-1, data-name-2, data-name-3, ... may be qualified.

(4) Data-name-2 must either be the name of the entry containing the OCCURS
clause or the name of an entry subordinate to the entry containing the OCCURS
clause .

(5) Data-name-3, etc., must be the name of an entry subordinate to the
group item which is the subject of this entry.

(6) An INDEXED BY phrase is required if the subject of this entry, or an

entry subordinate to this entry, is to be referred to by indexing. The index-
name identified by this clause is not defined elsewhere since its allocation
and format are dependent on the hardware, and not being data, cannot be
associated with any data hierarchy.

III-2

Table Handling - OCCURS

(7) A data description entry that contains Format 2 of the OCCURS clause

may only be followed, within that record description, by data description
entries which are subordinate to it.

(8) The OCCURS clause cannot be specified in a data description entry that:

a. Has a 01, 66, 77, or an 88 level-number.

b. Describes an item whose size is variable. The size of an item is

variable if the data description of any subordinate item contains Format 2 of
the OCCURS clause.

(9) In Format 2, the data item defined by data-name-1 must not occupy a
character position within the range of the first character position defined by
the data description entry containing the OCCURS clause and the last character
position defined by the record description entry containing that OCCURS clause.

(10) If data-name-2 is not the subject of this entry, then:

a. All of the items identified by the data-names in the KEY IS phrase
must be within the group item which is the subject of this entry.

b. Items identified by the data-name in the KEY IS phrase must not
contain an OCCURS clause. »

c. There must not be any entry that contains an OCCURS clause between

the items identified by the data-names in the KEY IS phrase and the subject of
this entry.

(11) Index-name-1 , index-name-2 , ... must be unique words within the
program.

2.1.4 General Rules

(1) The OCCURS clause is used in defining tables and other homogeneous

sets of repeated data items. Whenever the OCCURS clause is used, the data-
name which is the subject of this entry must be either subscripted or indexed
whenever it is referred to in a statement other than | SEARCH or|USE FOR

DEBUGGING. Further, if the subject of this entry is the name of a group item,

then all data-names belonging to the group must be subscripted or indexed
whenever they are used as operands, except as the object of a REDEFINES clause,

(See page 1-89, Subscripting; page 1-89, Indexing; page 1-90, Identifier.)

(2) Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS clause apply to

each occurrence of the item described. (See restriction in general rule 2 on

page 11-38.)

(3) The number of occurrences of the subject entry is defined as follows:

a. In Format 1, the value of integer-2 represents the exact number of
occurrences.

b. In Format 2, the current value of the data item referenced by

data-narae-i represents the number of occurrences.

III-3

Table Handling - OCCURS

This format specifies that the subject of this entry has a variable

number of occurrences. The value of integer-2 represents the maximum number of
occurrences and the value of integer- 1 represents the minimum number of occur-

rences. This does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of the data item referenced by data-name-1 must fall

within the range integer- 1 through integer-2. Reducing the value of the data
item referenced by data-name-1 makes the contents of data items, whose occur-

rence numbers now exceed the value of the data item referenced by data-name-1,
unpredictable.

(4) When a group item, having subordinate to it an entry that specifies
Format 2 of the OCCURS clause, is referenced, only that part of the table

area that is specified by the value of data-name-1 will be used in the opera-
tion.

(5) The KEY IS phrase is used to indicate that the repeated data is

arranged in ascending or descending order according to the values contained in

data-name-2, data-name-3, etc. The ascending or descending order is determined
according to the rules for comparison of operands (see page 11-42, Comparison
of Numeric Operands, and page 11-42, Comparison of Nonnumeric Operands). The

data-names are listed in their descending order of significance.

1 1 1- 4

Table Handling - USAGE

2.2 THE USAGE CLAUSE

2.2.1 Function

The USAGE clause specifies the format of a data item in the computer storage,

2.2.2 General Format

[USAGE is] index

2.2.3 Syntax Rules

SEARCH or (1) An index data item can be referenced explicitly only in a

SET statement, a relation condition, the USING phrase of a Procedure Division
header, or the USING phrase of a CALL statement.

(2) The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO clauses
cannot be used to describe group or elementary items described with the USAGE
IS INDEX clause.

2.2.4 General Rules

(1) The USAGE clause can be written at any level. If the USAGE clause is

written at a group level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE clause of
a group to which the item belongs.

(2) An elementary item described with the USAGE IS INDEX clause is called
an index data item and contains a value which must correspond to an occurrence

number of a table element. The elementary item cannot be a conditional var-

iable. The method of representation and the actual value assigned are deter-
mined by the implementor. If a group item is described with the USAGE IS INDEX

clause the elementary items in the group are all index data items. The group

itself is not an index data item and cannot be used in the | SEARCH or | SET state-
ment or in a relation condition.

(3) An index data item can be part of a group which is referred to in a

MOVE or input-output statement, in which case no conversion will take place.

(4) The external and internal format of an index data item is specified

by the implementor.

III-5

Table Handling - Procedure Division

3. PROCEDURE DIVISION IN THE TABLE HANDLING MODULE

3.1 RELATION CONDITION

3.1.1 Comparisons Involving Index-Names and/or Index Data Items

Relation tests may be made between:

(1) Two index-names. The result is the same as if the corresponding
occurrence numbers were compared.

(2) An index-name and a data item (other than an index data item) or

literal. The occurrence number that corresponds to the value of the index-name
is compared to the data item or literal.

(3) An index data item and an index-name or another index data item. The
actual values are compared without conversion.

(4) The result of the comparison of an index data item with any data item

or literal not specified above is undefined.

3.2 OVERLAPPING OPERANDS

When a sending and a receiving item in a SET statement share a part of
their storage areas, the result of the execution of such a statement is
undefined.

III-6

Table Handling - SEARCH

3.3 THE SEARCH STATEMENT

3.3.1 Function

The SEARCH statement is used to search a table for a table element that

satisfies the specified condition and to adjust the associated index-name to
indicate that table element.

3.3.2 General Format

Format 1

SEARCH identifier-1

VARYING (id
^^tifier-2

 [xndex-name- 1

^; AT END imperative-statement-1]

; WHEN condition- 1 imperative-s tatement-2 I
NEXT SENTENCE J

. - (imperative-statement- 3
; WHEN condxtxon-2 |^ SENTENCE

Format 2

SEARCH ALL identifier-1 [; AT END imperative-statement-l]

; WHEN
IS =

condition-name- 1

A. 1 (IS EQUAL TO) i:7:""rT data-name-1 < / -sliteral-l
identif ier-3

AND !, ^ o (
is equal to data-name- 2

condition-nam
e-

2

I arithmeti c- express ion- 1

[identifier-4 1 literal-2
I arithmetic- expression- 2^

! imperative-s tatement-2

NEXT SENTENCE
)

NOTE: The required relational character '=' is not underlined to avoid
confusion with other symbols.

3.3.3 Syntax Rules

(1) In both Formats 1 and 2, identifier-1 must not be subscripted or
indexed, but its description must contain an OCCURS clause and an INDEXED BY

clause. The description of identifier-1 in Format 2 must also contain the KEY
IS phrase in its OCCURS clause.

III-7

Table Handling - SEARCH

(2) Identifier-2, when specified, must be described as USAGE IS INDEX or
as a numeric elementary item v^ithout any positions to the right of the assumed
decimal point,

(3) In Format 1, condition-1, co£i,dition~2 , etc., may be any condition as
described in Conditional Expressions, page 11-41.

(4) In Format 2, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition-name must

appear in the KEY clause of identlf ier-1 . Each data~naine-l , data-name~2 may
be qualified. Each data-name-1, data-naine-2 must be indexed by the first

index-name associated with identifier- 1 along with other indices or literals
as required, and must be referenced in the ICEY clause of identif ier~l . Identi-

fier-3, identif ier-4 , or identifiers specified in arithmetic-expression- 1 ̂
arithmetic-expression-2 must not be referenced in the KEY clause of identifier- 1
or be indexed by the first index-nama associated with identif ier-1 .

In Format 2, when 'a data-name ir; the KEY clause of identif ier-1 is
referenced, or when a condition-name associated with a data-name in the KEY

clause of identif ier-1 is referenced, all preceding data-names in the KEY
clause of identifier-1 or their associated condition-names must also be
referenced. •

3.3.4 General Rules

(1) If Format 1 of the SEARCH is used, a serial type of search operation

takes place, starting with the current index setting.

a. If, at the start of execution of the SEARCH statement, the index-
name associated with identifier-l contains a value that corresponds to an
occurrence number that is greater than the highest permissible occurrence

number for identifier-1, the SEARCH is terminated immediately. The number
of occurrences of identifier-1, the last of which is the highest permissible,
is discussed in the OCCURS clause. (See page III-2, The OCCURS Clause.)

Then, if the AT END phrase is specified, imperative-statement- 1 is executed;
if the AT END phrase is not specified, control passes to the next executable
sentence.

b. If, at the start of execution of the SEARCH statement, the index-
name associated with identifier-1 contains a value that corresponds to an
occurrence number that is not greater than the highest permissible occurrence

number for identifier-1 (the number of occurrences of identifier-1, the last
of which is the highest permissible is discussed in the OCCURS clause; see

page III-2, The OCCURS Clause), the SEARCH statement operates by evaluating
the conditions in the order that they are written, making use of the index
settings, wherever specified, to determine the occurrence of those items to

be tested. If none of the conditions are satisfied, the index-name for
identifier-1 is incremented to obtain reference to the next occurrence. The

process is then repeated using the new index-name settings unless the new
value of the index-name settings for identifier-1 corresponds to a table
element outside the permissible range of occurrence values, in which case the
search terminates as indicated in la above. If one of the conditions is

satisfied upon its evaluation, the search terminates immediately and the

imperative statement associated with that condition is executed; the index- ;
name remains set at the occurrence which caused the condition to be satisfied. J I

III-8

Table Handling - SEARCH

(2) In a Format 2 SEARCH, the results of the SEARCH ALL operation are pre-
dictable only when:

a. The data in the table is ordered in the same manner as described

in the ASCENDING/DESCENDING KEY clause associated with the description of

identif ier-1, and

b. The contents of the key(s) referenced in the WHEN clause are
sufficient to identify a unique table element.

(3) If Format 2 of the SEARCH is used, a nonserial type of search opera-

tion may take place; the initial setting of the index-name for identifier- 1
is ignored and its setting is varied during the search operation in a manner
specified by the implementor, with the restriction that at no time is it set
to a value that exceeds the value which corresponds to the last element of

the table, or that is less than the value that corresponds to the first ele-

ment of 'the table. The length of the table is discussed in the OCCURS clause.
(See page III-2, The OCCURS Clause.) If any of the conditions specified in
the VvHEN clause cannot be satisfied for any setting of the index within the

permitted range, control is passed to imperative-statement-1 of the AT END
phrase, when specified, or to the next executable sentence when this phrase is
not specified; in either case the final setting of the index is not predictable.
If all the conditions can be satisfied, the index indicates an occurrence that

allows the conditions to be satisfied, and control passes to imperative-state-
ment -2 .

(4) After execution of imperative-statement-1, imperative-stateraent-2 , or
imperative-statement-3, that does not terminate with a GO TO statement, control
passes to the next executable sentence.

(5) In Format 2, the index-name that is used for the search operation is
the first (or only) index-name that appears in the INDEXED BY phrase of identi-

fier-!. Any other index-names for identif ier-1 remain unchanged.

(6) In Format 1, if the VARYING phrase is not used, the index-name that is
used for the search operation is the first (or only) index-name that appears
in the INDEXED BY phrase of identif ier-1 . Any other index-names for identi-

fier-! remain unchanged.

(7) In Format 1, if the VARYING index-name-1 phrase is specified, and if

index-name-1 appears in the INDEXED BY phrase of identifier-!, that index-name
is used for this search. If this is not the case, or if the VARYING identi-

fier-2 phrase is specified, the first (or only) index-name given in the INDEXED
BY phrase of identifier-! is used for the search. In addition, the following
operations will occur:

a. If the VARYING index-name-1 phrase is used, and if index-name-1
appears in the INDEXED BY phrase of another table entry, the occurrence number

represented by index-name-1 is incremented by the same amount as, and at the
same time as, the occurrence number represented by the index-name associated
with identifier-1 is incremented.

b. If the VARYING identifier-2 phrase is specified, and identifier-2
is an index data item, then the data item referenced by identifier-2 is incre-

mented by the same amount as, and at the same time as, the index associated

III-9

Table Handling - SEARCH

with identifier-1 is incremented. If identifier-2 is not an index data item,
the data item referenced by identifier-2 is incremented by the value one (1)

at the same time as the index referenced by the index-name associated with
identifier-1 is incremented.

(8) If identifier-1 is a data item subordinate to a data item that con-
tains an OCCURS clause (providing for a two or three dimensional table) , an

index-name must be associated with each dimension of the table through the

INDEXED BY phrase of the OCCURS clause. Only the setting of the index-name
associated with identifier-1 (and the data item identifier-2 or index-name- 1 ,
if present) is modified by the execution of the SEARCH statement. To search
an entire two or three dimensional table it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH statement, SET

statements must be executed whenever index-names must be adjusted to appro-
priate settings.

A flowchart of the Format 1 SEARCH operation containing two \"7HEN phrases
follows :

START

Index setting:

highest permissible
occurrence number

condition- 1

False

condition-2

False

> AT KND*
imperative-
statement-1

 >

J
True

imperative-
statement-2

 >

True

iraperative-
statement-3

>

J

Increment

index-name for

identifier-1

(index-name- 1
if applicable)

j ^ Increment *
index-name- 1 (for
a different table)

or ldentifier-2
 w

*These operations are options included only when specified in the SEARCH
statement .

**Each of these control transfers is to the next executable sentence unless

the imperative-statement ends with a GO TO statement.

III-IO

Table Handling - SET

3.4 THE SET STATEMENT

3.4.1 Function

The SET statement establishes reference points for table handling operations

by setting index-names associated with table elements.

3.4.2 General Format

Format 1

f identif ier-1 [, identif ier-2 1 . . .] \ ̂'^^^'^^^^^ 3 SET ■(,, ■> \. . ■^ ^T0-< index-name-
 mdex-name-l f , index-name-2 I ... — • ̂ i
»- L ' •'J l^mteger-l

Format 1

„„„ . , / \ ■ A ^^ ■ fuP BY 1 fidentifier-A[SET index-name-4 I, index-name-5 J ... ■|:;rr^;7r"T,-o- f \- ̂ ^ (
 ■* [DOWN BY I (^xnteger-2]

3.4.3 Syntax Rules

(1) All references to index-name- 1 , identif ier-1 , and index-name-4 apply
equally to index-name-2, identif ier-2 , and index-name-5, respectively.

(2) Identif ier-1 and identif ier-3 must name either index data items, or
elementary items described as an integer.

(3) Identif ier-4 must be described as an elementary numeric integer.

(4) Integer-1 and integer-2 may be signed. Integer-1 must be positive.

3.4.4 General Rules

(1) Index-names are considered related to a given table and are defined by
being specified in the INDEXED BY clause.

(2) If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence number of an
element in the associated table.

If index-name-A , index-name-5 is specified, the value of the index
both before and after the execution of the SET statement must correspond to an

occurrencie number of an element in the associated table. If index-name- 1 ,
index-name-2 is specified, the value of the index after the execution of the

SET statement must correspond to an occurrence number of an element in the'
associated table. The value of the index associated with an index-name after
the execution of alSEARCH or|PERFORM statement may be undefined. (See

III-7, The SEARCH Statement and page 11-78, The PERFORM Statement.)
pa£(

III- 11

Table Handling - SET

(3) In Format 1, the following action occurs:

a. Index-name-1 is set to a value causing it to refer to the table
element that corresponds in occurrence number to the table element referenced

by index-name-3, identif ier-3 , or integer-1. If identifier-3 is an index data
item, or if index-name-3 is related to the same table as index-name-1, no
conversion takes place.

b. If identifier- 1 is an index data item, it may be set equal to
either the contents of index-name-3 or identifier-3 where identifier-3 is
also an index data item; no conversion takes place in either case.

c. If identifier- 1 is not an index data item, it may be set only to
an occurrence number that corresponds to the value of index-name-3. Neither
identifier-3 nor integer-1 can be used in this case.

d. The process is repeated for index-name-2 , identif ier-2 , etc., if
specified. Each time the value of index-name-3 or identifier-3 is used as it
was at the beginning of the execution of the statement. Any subscripting or

indexing associated with identif ier-1 , etc., is evaluated immediately before
the value of the respective data item is changed.

(4) In Format 2, the contents of index-name-4 are incremented' (UP BY) or
decremented (DOWN BY) by a value that corresponds to the number of occurrences

represented by the value of integer-2 or identif ier-4 ; thereafter, the process
is repeated for index-name-5 , etc. Each time the value of identif ier-4 is
used as it was at the beginning of the execution of the statement.

(5) Data in the following chart represents the validity of various operand
combinations in the SET statement. The general rule reference indicates the
applicable general rule.

Sending Item
Receiving Item

Integer Data Item Index-name Index Data Item

Integer Literal No/3c Valid /3a No/3b

Integer Data Item No/3c Valid /3a No /3b

Index-Name Valid/3c Valid/3a
.Valid/ 3b *

Index Data Item No/3c
Valid/3a * Valid /3b *

*No conversion takes place

III-12

Sequential - IntrodbAction

1. INTRODUCTION TO THE SEQUENTIAL I -0 MODULE

1.1 FUNCTION

The Sequential I-O module provides a capability to access records of a
file in established sequence. The sequence is established as a result of

writing the records to the file. It also provides for the specification of

rerun points and the sharing of memory areas among files.

1.2 LEVEL CHARACTERISTICS

Sequential 1-0 Level 1 does not provide full COBOL facilities for the
FILE-CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this
module. Within the Procedure Division, the Sequential 1-0 Level 1 provides
limited capabilities for the CLOSE, OPEN, USE, and WRITE statements and full
capabilities for the READ and REWRITE statements, as specified in the formats
of this module.

Sequential 1-0 Level 2 provides full facilities for the FILE-CONTROL,
I-O-CONTROL, and FD entries as specified in the formats of this module. With-

in the Procedure Division, the Sequential 1-0 Level 2 provides full capabil-
ities for the CLOSE, OPEN, READ, REWRITE, USE, and WRITE statements as

specified in the formats of this module. The additional features available in

Level 2 include: OPTIONAL files, the RESERVE clause, SAME RECORD AREA,

MULTIPLE FILE tapes, REVERSED, EXTEND, and additional flexibility through
series options.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

Sequential files are organized such that each record In the file except
the first has a unique predecessor record, and each record except the last

has a unique successor record. These predecessor-successor relationships are
established by the order of WRITE statements when the file is created. Once

established, the predecessor-successor relationships do imot change except in
the case where records are added to the end of the file,

1.3.2 Access Mode

In the sequential access mode, the sequence in which records are accessed
is the order in which the records were originally writtem,

1.3.3 -Current Record Pointer

The current record pointer is a conceptual entity used in this document to
facilitate specification of the next record to be accessed within a given file.
The concept of the current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer is affected only
by the OPEN and READ statements.

1.3.4 1-0 Status

If the FILE STATUS clause is specified in a file continol entry, a value is

placed into the specified two-character data item during the execution of an

IV- 1

Sequential I-O - Introduction

OPEN, CLOSE, READ, WRITE, or REWRITE statement and before any applicable

USE procedure is executed, to indicate to the COBOL program the status of

that input-output operation.

1.3.4.1 Status Key 1 '

The leftmost character position of the FILE STATUS data item is known as

status key 1 and is set to indicate one of the following conditions upon

completion of the input-output operation.

'0' indicate Successful Completion
' 1 ' indicates At End

'3' indicates Permanent Error

'9' indicates Implementor Defined

The meaning of the above indications are as follows:

0 - Successful Completion. The input-output statement was successfully
executed.

1 - At End. The sequential READ statement was unsuccessfully executed
either as a result of an attenipt to read a record when no next logical record

exists in the file ^| or as a result of the first READ statement being executed
for a file described with the OPTIONAL clause, and that file was not available

to the program at the time its associated OPEN statement was executed.

3 - Permanent Error. The input-output statement was unsuccessfully executed
as the result of a boundary violation for a sequential file or as the result of

an input— output error, such as data check parity error, or transmission error.

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor. This
value is used only to indicate a condition not indicated by other defined

values of status key 1, or by specified combinations of the values of status
key 1 and status key 2.

1.3.4.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known as

status key 2 and is xised to further describe the results of the input-output
operation. This character will contain a value as follows:

1. If no further information is available concerning the input-output

operation, then status key 2 contains a value of '0'.

2. When status key 1 contains a value of '3' indicating a permanent error
condition, status key 2 may contain a value of '4' Indicating a boundary viola-

tion. This condition indicates that an attempt has been made to write beyond
the externally de;v^...ea boundaries of a sequential file. The implementor
specifies the manner in which these boundaries are defined.

3. When st.,i;us key 1 contains a value of '9' indicating an implementor-
defined conditxon, the value of status key 2 is defined by the implementor.

IV-2

Sequential I-O - Introduction

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status

key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status Key 1

Status Key 2

No Further
Information

(0)

Boundary

Violation

(4)

Successful Completion (0) X

At End (1) X

Permanent Error (3) X X

Implementor Defined (9)

1.3.5 The AT END Condition

The AT END condition can occur as a result of the execution of a READ

statement. For details of the causes of the condition, see page IV-28, The
READ Statement.

1.3.6 LINAGE-COUNTER

The reserved word LINAGE-COUNTER is a name for a special register generated
by the presence of a LINAGE clause in a file description entry. The implicit
description is that of an unsigned integer whose size is equal to the size of

integer- 1 or the data item referenced by data-name- 1 in the LINAGE clause.

See page IV-15, The LINAGE Clause, for the rules governing the LINAGE-COUNTER.

IV- 3

Sequential I-O - FILE-CONTROL

2. ENVIRONMENT DIVISION IN THE SEQUENTIAL 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry} ...

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT
[optional] file-name

ASSIGN TO implementor-name-1 [, implementor-name-2] ...

RESERVE integer-1
AREA

AREAS

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

FILE STATUS IS data-name- 1] .

2.1.2.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file described in the Data Division must be named once and only

once as file-name in the FILE-CONTROL paragraph. Each file specified in the
file control entry must have a file description entry in the Data Division.

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

(4) Data-name- 1 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the File
Section, the Report Section, or the Communication Section.

IV-4

Sequential I-O - FILE-CONTROL

(5) Data-name- 1 may be qualified.

(6) When the ORGANIZATION IS SEQUENTIAL clause is not specified, the
ORGANIZATION IS SEQUENTIAL clause is implied.

(7) The OPTIONAL phrase may only be specified for input files. Its
specification is required for input files that are not necessarily present
each time the object program is executed.

2.1.2.4 General Rules •

(1) The ASSIGN clause specifies the association of the file referenced by

file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number of input-output
areas allocated. If the RESERVE clause is specified, the number of input-output
areas allocated is equal to the value of integer-1. If the RESERVE clause is
not specified the number of input-output areas allocated is specified by the
implement or .

(3) The ORGANIZATION clause specifies the logical structure of a file.

The file organization is established at the time a file is created and cannot
subsequently be changed.

(A) Records in the file are accessed in the sequence dictated by the file

organization. This sequence is specified by predecessor-successor record
relationships established by the execution of WRITE statements when the file
is created or extended.

(5) When the FILE STATUS clause is specified, a value will be moved by

the operating system into the data item specified by data-name-1 after the
execution of every statement that references that file either explicitly or
implicitly. This value indicates the status of execution of the statement.

(See page IV-1, 1-0 Status.)

IV- 5

Sequential I-O - I-O-CONTROL

2.1.3 The I-O-CONTROL Paragraph

2.1.3.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established, the memory area which is to be shared by different files, and
the location of files on a multiple file reel.

2.1.3.2 General Format

I-O-CONTROL .

r
i SAME

[RECORD
 "

AREA FOR file-name-3 {, file-name-4} •••] ••

1 [; MULTIPLE FILE TAPE CONTAINS file-name-5 [POS

j is file-name-6 [POSITION integer-4 1] ...

ITION integer-3]

2.1.3.3 Syntax Rules

(1) The I-O-CONTROL paragraph is optional.

(2) File-narae-1 must be a sequentially organized file.

(3) The END OF REEL/UNIT clause may only be used if file-name-2 is a
sequentially organized file. The definition of UNIT is determined by each
implementor.

(4) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

(5) More than one RERUN clause may be specified for a given file-name-2,
subject to the following restrictions:

a. When multiple integer-1 RECORDS clauses are specified, no two of
them may specify the same file-name-2.

b. When multiple END OF REEL or END OF UNIT clauses are specified,

no two of them may specify the same file-name-2.

(6) Only one RERUN clause containing the CLOCK-UNITS clause may be
opecified.

IV-6

Sequential I-O - I-O-CONTROL

(7) The two forms of the SAME clause (SAME AREA> j SAME RECORD AREAJI are
considered separately in the following:

More than one GAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause.

c. If one or more file-names of c SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names not
appearing in that SAME AREA clause may also appear in that SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause

can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

(8) The files referenced in the SAJ4E AREA! or SAME RECORD AREA! clause need

not all have the same organization or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies vjhen and where the rerun information is

recorded. Rerun information is recorded in the following ways:

a. If file-name- 1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the reel or file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a device specified by the implementor.

(2) There are seven forms of the RERUN clause, based on the several

conditions under which rerun points can be established. The implementor
must provide at least one of the specified forms of the RERUN clause.

a. When either the END OF REEL or END OF UNIT clause is used with-

out the ON clause. In this case, the rerun information is written on file-

name-2 , which must be an output file.

b. When either the END OF REEL or END OF UNIT clause is used and

file-name-1 is specified in the OH clause. In this case, the rerun infor-
mation is written on file-name-1, which must be an output file. In addition,

normal reel, or unit, closing functions for file-name-2 are performed.

File-name-2 may either be an input or an output file.

c. When either the END OF REEL or END OF UNIT clause is used and •

implementor-name is specified in the ON clause. In this case, the rerun
information is written on a separate rerun unit defined by the implementor.

File-name-2 may be either an input or output file.

d. When the integer-l RECORDS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever integer-l records of

IV- 7

Sequential I~0 - I-O-CONTROL

file-naine-2 have been processed. File-name-2 may be either an input or
output file with any organization or access.

e. When the integer-2 CLOCK-UNITS clause is used. In this case, the
rerun information is written on the device specified by implementor-name ,
which must be specified in the ON clause, v^henever an interval of time,
calculated by an internal clock, has elapsed.

f. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written

on the device specified by implementor-name whenever a switch assumes a

particular status as specified by condition-name. In this case, the associated
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

g. When the condition-name clause is used and file-name- 1 is
specified in the ON clause. In this case, the rerun information is written

on file-name-1, which must be an output file, whenever a switch assumed a

particular status as specified by cond^-tion-name. In this case, as in
paragraph f above, the associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

(3) The SAME AREA clause specifies that two or more files that do not

represent sort or merge files are to use the same memory area during process-
ing. The area being shared includes all storage area assigned to the files

specified; therefore, it is not valid to have more than one of the files open

at the same time. (See syntax rule 7c on page IV-7.)

(4) The SAME RECORD AREA clause specifies that two or more files are to

use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD

AREA is considered as a logical record of each opened output file whose file-
name appears in this SAME RECORD AREA clause and of the most recently read

input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., records are aligned
on the leftmost character position.

(5) The MULTIPLE FILE clause is required when more than one file shares
the same physical reel of tape. Regardless of the number of files on a single
reel, only those files that are used in the object program need be specified.

If all file-names have ^ been listed in consecutive order, the POSITION clause
need not be given. If any file in the sequence is not listed, the position
relative to the beginning of the tape must be given. Not more than one file
on the same tape reel may be open at one time.

IV-8

Sequential 1-0 - 'Pile Section

3. DATA DIVISION IN THE SEQUENTIAL I-O MODULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest

level of organization in the File Section. The File Section header is follow-
ed by a file description entry consisting of a level indicator (FD) , a file-

name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records,

the value of implementor-def ined label items, the names of the data records
which comprise the file, and the number of lines to be written on a logical
printer page. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required, A record description has a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of

Levels on page 1-84 while the elements allowed in a record description are
shown in the data description skeleton on page 11-12.

Sequential I-O - File Desaription

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.1 Function

The file description furnishes information concerning the physical struc-

ture, identification, and record names pertaining to a given file.

3.3.2 General Format

FD file-name

; BLOCK CONTAINS [integer-1 TO]
^ (records 1

integer-/ <■
\ CHARACTERS J

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

; LABEL I RECORD IS) (STANDARDI

[RECORDS ARE) (OMITTED,]

; VALUE OF implementor-name-1 IS ̂ Uteral-l '} ,

I data-name-2 implementor-name-2 IS ■! ̂ . ̂ ̂ ̂ ^ (literal-2

[RECORD IS
\ RECORDS ARE

{ RECORD IS),^ -i [A ̂

; DATA \ ̂^^^^^-^ ̂ ^^1 data-name-3 [, dat

a-name -4] ...

; LINAGE IS data-name-5

integer-5

LINES

, WITH FOOTING AT
 (d^ta-name-6

 (^integer-5

, LINES AT TOP data-name- 7

integer-7
, LINES AT BOTTOM dat a-name- 8

integer-8

[; CODE-SET IS alphabet-name] ,

3.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file
description entry.

IV-10

Sequential I-O - BLOCK CONTAINS

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Format

BLOCK CONTAINS
[integer-1 TO]

^ jRECORDS 1 3.nteger-2 | CHARACTERS]

3.4.3 General Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one
physical record size.

c. The hardware device assigned to the file has more than one

physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,

unless one of the following situations exist, in which case the RECORDS
phrase must not be used

a. In mass storage files, where logical records may extend across
physical records.

b. The physical record contains padding (area not contained in a
logical record) .

c. Logical records are grouped in such a manner that an inaccurate

physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
physical record. |If integer-1 and integer-2 are both shown, they refer to
the minimum and maximum size of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

IV- 11

Sequential 1-0 - CODE-SET

3.5 THE CODE-SET CLAUSE

3.5.1 Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

3.5.2 General Format

CODE-SET IS alphabet-name

3.5.3 Syntax Rules

(1) When the CODE-SET clause is specified for a file, all data in that
file mu§t be described as usage is DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase. .

(3) The CODE-SET clause may only be specified for non-mass storage files.

3.5.4 General Rules

(1) If the CODE-SET clause is specified, alphabet-name specifies the
character code convention used to represent data on the external media. It

also specifies the algorithm for converting the character codes on the external
media from/to the native character codes. This code conversion occurs during ■

the execution of an input or output operation. (See page II-8, The SPECIAL- |
NAMES Paragraph.) I

(2) If the CODE-SET clause is not specified, the native character code |
set is assumed for data on the external media. i

IV- 12
1

Sequential I-O - DATA RECORDS

3.6 THE DATA RECORDS CLAUSE

3.6.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.6.2 General Format

3.6.3 Syntax Rules ^

(1) Data-name-l and data-name-2 are the names of data records and must

have 01 level-number record descriptions, with the same names, associated
with them.

3.6.4 General Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ-

ing sizes, different formats, etc. The order in which they are listed is not
significant.

(2) Conceptually, all data records within a file share the same area.

This is in no way altered by the presence of more than one type of data
record within the file.

data-name-l [, data-name-2

IV- 13

Sequential I-O - LABEL RECORDS

3.7 THE LABEL RECORDS CLAUSE

3.7.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.7.2 General Format

LABEL
' RECORD IS

■ RECORDS ARE

STANDARD

OMITTED

3.7.3 Syntax Rules

(1) This clause is required in every file description entry.

3.7.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to

which the file is assigned and the labels conform to the implementor ' s label
specifications .

IV- 1 A

»

Sequential I-O - LINAGE

3.8 THE LINAGE CLAUSE

3.8.1 Function

The LINAGE clause provides a means for specifying the depth of a logical

page in terms of number of lines. It also provides for specifying the size of
the top and bottom margins on the logical page, and the line number, within the
page body, at which the footing area begins.

3.8.2 General Format

LINAGE IS l
fata-name-1 L integer- 1

LINES

WITH FOOTING AT
 (data-name-2

 tinteger-2

LINES AT TOP
 (data-name-S {_integer-3

LINES AT BOTTOM

jdata-name-A

\integer-4

3.8.3 Syntax Rules

(1) Data-name- 1, data-name-2, data-name-3, data-name-4 must reference
elementary unsigned numeric integer data items.

(2) The value of integer-1 must be greater than zero.

(3) The value of integer-2 must not be greater than integer-1.

(4) The value of integer-3, integer-4 may be zero.

3.8.4 General Rules

Cl) The LINAGE clause provides a means for specifying the size of a logical
page in terms of number of lines. The logical page size is the sum of the
values referenced by each phrase except the FOOTING phrase. If the LINES AT
TOP or LINES AT BOTTOM phrases are not specified, the values for these functions
are zero. If the FOOTING phrase is not specified, the assumed value is equal

to integer-1, or the contents of the data item referenced by data-name-1,
whichever is specified.

There is not necessarily any relationship between the size of the
logical page and the size of a physical page.

(2) The value of integer-1 or the data item referenced by data-name-1
specifies the number of lines that can be written and/or spaced on the logical
page. The value must be greater than zero. That part of the logical page in
which these lines can be written and/or spaced is called the page body.

(3) The value of integer-3 or the data item referenced by data-name-3
specif xes uhe niunber of lines that comprise the top margin on the logical page.
The value may be zero .

(4) The value of integer-4 or the data item referenced by data-name-4
specifies the number of lines that comprise the bottom margin on the logical

j page . The value may be zero.

IV- 15

Sequential I-O - LINAGE

(5) The value of integer-2 or the data item referenced by data-name-2
specifies the line number within the page body at which the footing area

begins. The value must be greater than zero and not greater than the value

of integer-1 or the data item referenced by data-name-1. ^

The footing area comprises the area of the logical page between the

line represented by the value of integer-2 or the data item referenced by
data-name-2 and the line represented by the value of integer-1 or the data
item referenced by data-name-1, inclusive.

(6) The value of integer-1, integer-3, and integer-4, if specified, will
be used at the time the file is opened by the execution of an OPEN statement
with the OUTPUT phrase, to specify the number of lines that comprise each of

the indicated sections of a logical page. The value of integer-2, if specified,
will be used at that time to define the footing area. These values are used

for all logical pages written for the file during a given execution of the
program. j

(7) The values of the data items referenced by data-name-1, data-name-3,
and data-name-4, if specified, will be used as follows:

a. The values of the data items, at the time an OPEN statement with

the OUTPUT phrase is executed for the file, will be used to specify the number

of lines that are to comprise each of the indicated sections for the first
logical page.

b. The values of the data items, at the time a WRITE statement with

the ADVANCING PAGE phrase is executed or page overflow condition occurs, (see

page IV-34, The WRITE Statement), will be used to specify the number of lines
that are to comprise each of the indicated sections for the next logical page.

(8) The value of the data item referenced by data-narae-2, if specified,
at the time an OPEN statement with the OUTPUT phrase is executed for the file,

will be used to define the footing area for the first logical page. At the
time a WRITE statement with the ADVANCING PAGE phrase is executed or a page

overflow condition occurs, it will be used to define the footing area for the
next logical page.

(9) A LINAGE-COUNTER is generated by the presence of a LINAGE clause. The
value in the LINAGE -COUNTER at any given time represents the line number at
which the device is positioned within the current page body. The rules govern-

ing the LINAGE-COUNTER are as follows: •

a. A separate LINAGE-COUNTER is supplied for each file described in
the File Section whose file description entry contains a LINAGE clause. ;

\

b. LINAGE-COUNTER may be referenced, but may no-t be modified, by Pro-?
cedure Division statements. Since more than one LINAGE-COUNTER may exist in a
program, the user must qualify LINAGE-COUNTER by file-rjame when necessary.

c. LINAGE-COUNTER is automatically modified, according to the follow-
ing rules, during the execution of a WRITE statement to an associated file:

1) V-Jhen the ADVANCING PAGE phrase of the \^JRITE statement is

specified, the LINAGE-COUNTER is automatically reset to one (1)..

IV- 16

Sequential I-O - LINAGE

2) When the ADVANCING identifier-2 or integer phrase of the WRITE

statement is specified, the LINAGE-COUNTER is incremented by integer or the

value of the data item referenced by identifier-2.

3) Wlien the ADVANCING phrase of the WRITE statement is not speci-
fied, the LINAGE-COUNTER is incremented by the value one (1). (See page IV-34,

The ̂ ^^RITE Statement.)

A) The value of LINAGE-COUNTER is automatically reset to one (i)
when the device is repositioned to the first line that can be written on for

each of the succeeding logical pages. (See page IV~34, The WRIT'i Statement.)

d. The value of LINAGE-COUNTER is automatically sec to one (1) at the
time an OPEN statement is executed for the associated file.

(10) Each logical page is contiguous to the next with no additional spacing

provided.

IV- 17

Sequential I-O - RECORD CONTAINS

3.9 THE RECORD CONTAINS CLAUSE

3.9.1 Function

The RECORD CONTAINS clause specifies the size of data records,

3„9.2 General Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

3.9.3 General Rules

(1) The size of each data record is completely defined within the record ,

description entry, therefore this clause is never required. VJhen present,

however, the following notes apply:

a. Integer-2 may Hot be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
uumber of characters in the data record. If integer-1 and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. i The size is specified in terms of the number of character posi-

tions required to store the logical record, regardless of the types of charac-
ters used to represent the items within the logical record. The size of a

record is determined by the sum of the number of characters in all fixed
length elementary items plus the sum of the maximum number of characters in
ar,y variable length item subordinate to the record. This sum may be different

:':rom the actual size of the record; see page 1-85, Selection of Character
Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35,
Tae USAGE Clause.

IV- 18

ML

Sequential I-O - VALUE- OF

3.10 THE VALUE OF CLAUSE

3.10.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.10.2 General Format

VALUE OF implemeutor-name-l IS

, imp lemen tor-name- 2 IS

data-name- 1

literal-1

rdata-name-2

literal-2

3.10.3 Syntax Rules

(1) Data-name-l, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section,

3.10.4 General Rules

(1) For an input file, the appropriate label routine checks to see if the

value of implemeiitor-name-l is equal to the value of literal-1 , 1 or of
data-name-l, whichever has been specified.

For an output file, at the appropriate time the value of implementor-
name-1 is made equal to the value of literal-1, or of a data-name-l, whichever
has been specifiedTl

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

Sequential 1-0 - CLOSE

4. PROCEDURE DIVISION IN THE SEQUENTIAL I-O MODULE

4.1 THE CLOSE STATEMENT

4.1.1 Function

The CLOSE statement terminates the processing of reels/units and files

with optional rewind and/or lock or removal where applicable.

4.1.2 General Format

CLOSE file-name- 1

[reel] unit(WITH NO REWIND
FOR REMOVAL

TTTTT4 I NO REWIND)

, f ile-name-2

f REEL

[UNIT

WITH NO REWIND
FOR REMOVAL

WITH <—

NO RH'JIND,!

LOCK

•J

4.1.3 Syntax Rules

(1) The REEL or UNIT phrase must only be used for sequential files.

(2) The files referenced in the CLOSE statement need not all have the same

organization or access.

4.1.4 General Rules

Except where otherwise stated in the general rules below, the terms 'reel'
and 'unit' are synonymous and completely interchangeable in the CLOSE state-

ment. Treatment of sequential mass storage files is logically equivalent to
the treatment of a file on tape or analogous sequential media.

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) For the purpose of showing the effect of various types of CLOSE state-
ments as applied to various storage media, all files are divided into the

following categories:

a. Non-reel/unit. A file whose input or output medium is such that
the concepts of rewind and reels/units have no meaning.

b. Sequential single-reel/unit. A sequential file that is entirely
contained on one reel/unit.

c. Sequential multi-reel/unit. A sequential file that is contained
on more than one reel/unit.

IV-20

Sequential I-O - CLOSE

(3) The results of executing each type of CLOSE for each category of file
are summarized in Table 1, Relationship of Categories of Files and the Formats
of the CLOSE Statement.

CLOSE
Statement
Format

File Category

Non-Reel /Unit

Sequential

Single-
Reel/Unit

Sequential

Multi-
Reel/Unit

CLOSE C C,G
C,G,A

CLOSE WITH LOCK C,E C,G,E C,G,E,A

CLOSE WITH'nO rewind
X

C,B C,B,A

CLOSE REEL/UNIT
'i X X F,G

CLOSE REEL /UNIT
FOR REMOVAL

X X
F,D,G

CLOSE REEL/UNIT
WITH NO REWIND

X X
F»B

Table 1. Relationship of Categories of Files and the Formats
of the CLOSE Statement

The definitions of the symbols in the table are given below. Where

the definition depends on whether the file is an input, output or input-output
file, alternate definitions are given; otherwise, a definition applies to

input, output, and input-output files.

A. Previous Reels/Units Unaffected

Input Files and Input-Output Files;

All reels /units in the file prior to the current reel/unit are

processed according to the implementcr 's standard reel/unit swap procedure,
except those reels /units controlled by a prior CLOSE REEL/UNIT statement. If
the current reel/unit is not the last in the file, the reels/units in the file

following the current one are not processed.

Output Files :

All reels/units in the file prior to the current reel/unit are

processed according to the implementor 's standard reel/unit swap procedure,
except those reels/units controlled by a prior CLOSE REEL/UNIT statement.

B. No Rewind of Current Reel

The current reel/unit is left in its current position.

IV- 21

Sequential 1-0 - CLOSE

C. Close File I

Input Files and Input-Output Files :

If the file is positioned at its end and label records are speci-

fied for the file, the labels are processed according to the implementor 's
standard label convention. The behavior of the CLOSE statement when label

records are specified but not present, or when label records are not specified
but are present, is undefined. Closing operations specified by the implementor

are executed. If the file is positioned at its end and label records are not '
specified for the file, label processing does not take place but other closing

operations specified by the implementor are executed. If the file is posi- \
tioned other than at its end, the closing operations specified by the implemen-

tor are executed, but there is no ending label processing.

Output Files ;

If label records are specified for the file, the labels are

processed according to the implementor 's standard label convention. The
behavior of the CLOSE statement when label records are specified but not

present 5 or when label records are not specified but are present, is undefined.
Closing operations specified by the implementor are executed. If label records
are not specified for the file, label processing does not take place but other

closing operations specified by the implementor are executed. i'

D. Reel/Unit Removal

An implementor- defined technique is supplied to ensure that the
current reel or unit is rewound when applicable, and that the operating
system is notified that the reel or unit is logically removed from this run i

unit; however, the reel or unit may be accessed again, in its proper order
of reels or units within the file, if a CLOSE statement without the REEL or
UNIT phrase is subsequently executed for this file followed by the execution
of an OPEN statement for the file.

E. File Lock

An implement or- defined technique is supplied to ensure that this
file cannot be opened again during this execution of this run unit.

F. Close Reel/Unit j

Input Files ;

The following operations take place:

1. A reel/unit swap. !

2. The standard beginning re^l/unit label procedure is executed.

The next executed REAP statement for that file makes available i

the next data record on the new reel/unit.

IV -11 II

Sequential I-O - CLOSE

Output Files and Input-Output Files:

Tlie following operations take place:

1. (For output files only.) The standard ending reel/unit label
procedure is executed.

2. A reel/unit swap.

3. The standard beginning reel/unit label procedure is executed.

For input-output files, the next executed READ statement that
references that file makes the next logical data record on the next mass
storage unit available. For output files, the next executed \\rRITE statement
that references that file directs the next logical data record to the next
reel/unit of the file.

G. Rewind

The current reel or analogous device is positioned at its physical
beginning .

X. Illegal

This is an illegal combination of a CLOSE option and a file

category. The results at object time are undefined.

(4) The action taken if the fiile is in the open mode when a STOP RUN

statement is executed is specified by the implementor. The action taken for
a file that has been opened in a called program and not closed in that program
prior to the execution of a CANCEL statement for that program is also specified
by the implementor.

(5) If the OPTIONAL phrase has been specified for the file in the FILE-
CONTROL paragraph of the Environment Division and the file is not present,

the standard end-of-file processing is not performed for that file.

(6) If a CLOSE statement without the REEL or UNIT phrase has been exe

cuted for a file, no other statement (except the SORT or MERGE statements with
the USING or GIVING phrases) can be executed that references that file, either

explicitly or implicitly, unless an intervening OPEN statement for that file
is executed.

(7) The WITH NO REWIND and FOR REMOVAL phrases will have no effect at

object time if they do not apply to the storage media on which the file
resides .

(8) Following the successful execution of a CLOSE statement I witliout the

REEL or UNIT phrase,] the record area associated with file-name is no longer
available. The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

IV-23

Sequential I-O - OPEN

4.2 THE OPEN STATEMENT

4.2.1 Function

The OPEN statement initiates the processing of files. It also perforins

checking and/or writing of labels and other input-output operations.

4.2.2 General Format

f

INPUT file-name- 1

OPEN J OUTPUT file-name-3

1-0 file-name-5

REVERSED

WITH NO RH^TIND f ile-name-2
REVERSED

WITH NO REWIND

[with NO REWIND] [, file-name-4 [wiTH NO REWIND]] . . .

[, file-name-6] ...

EXTEND file-name-7 [, f ile-name-8]

4o2.3 Syntax Rules

(1) The REVERSED and the NO REWIND phrases can only be used with

sequential files. (See The CLOSE Statement on page IV-20.)

(2) Tlie 1-0 phrase can be used only for mass storage files.

(3) The EXTEND phrase can be used only for sequential files.

(4) The EXTEND phrase must not be specified for multiple file reels.

(See The I-O-CONTROL Paragraph on page IV-6.)

(5) The files referenced in the OPEN statement need not all have the

same organization or access.

4.2.4 General Rules

(1) The successful execution of an OPEN statement determines the avail-
ability of the file and results in the file being in an open mode.

(2) The successful execution of an OPEN statement makes the associated

record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given
file, no statement (except for a SORT or MERGE statement with the USING or
GIVING phrases) can be executed that references that file, either explicitly
or implicitly.

(4) An OPEN statement must be successfully executed prior to the execution

f any of the permissible input-output statements. In Table 2, Permissible

tatements, on page IV-25 , 'X' at an intersection indicates that the specified
statement, used in the sequential access mode, may be used with the sequential

'""ile organization and open mode given at the top of the column.

IV-24

Sequential 1-0 - OPEN

Statement

Open Mode

Input Output Input-Output Extend

KEAD X X

WRITE J\ X

REl^RITE X

Table 2. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT , IEXTENd] and I-O phrases
in the same program. Following the initial execution of an OPEN statement
for a file, each subsequent OPEN statement execution for that same file must

be preceded by the execution of a CLOSE statement, without the REEL, UNIT, [oi-
LOCkI phrase, for that file.

(6) Execut ion of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows:

a. When the INPUT phrase is specified, the execution of the OPEN

statement causes the labels to be checked in accordance v;j.th the implementor ' s
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the labels to be written in accordance V7ith the implementor ' s
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified

but not present, or when label records are not specified but are present,
is undefined.

(8) The file description entry for file-name-1, f ile-nam.c-2 , file-name-5,

file-name-6, file-name-7, or file-name-8 must be equivalent to that used when
this file was created.

(9) If an input file is designated with the OPTIONAL phrase In its SELECT

clause, the object program causes an interrogation for the presence or
absence of this file. If the file is not present, the first READ statciiient
for this file causes the AT END condition to occur. (See The READ Statement

on page IV-28.)

(10) The REVERSED and NO REWIND phrases can only be used with sequential

single reel/unit files. (See The CLOSE Statement on page IV-2G.)

(11) The REVERSED and WITH NO REWIND phrases will be ignored if they do
not apply to the storage media on which the file resides.

IV-25

Sequential I-O - OPEN

(12) If the storage medium for the file permits rewinding, the following
rules apply:

When neither the REVERSED, the EXTEND, nor the NO REWIND phrase is

specif led J execution of the OPEN statement causes the file to be positioned at

its beginning.

b. When the NO REWIND phrase is specified, execution of the OPEN

statement does not cause the file to be repositioned; the file must be already
positioned at its beginning prior to execution of the OPEN statement.

c. When the REVERSED phrase is specified, the file is positioned at

its end by execution of the OPEN statement.

(13) When the REVERSED phrase is specified, the subsequent READ statements
for the file make the data records of the file available in reversed order;

that is, starting with the last record.

(14) For files being opened with the' INPUT or 1-0 phrase, the OPEN state-
ment sets the current record pointer to the first record currently existing

within the file. If no records exist in the file, the current record pointer
is set such that the next executed READ statement for the file will result in
an AT END condition.

(15) When the EXTEND phrase is specified, the OPEN statement positions the

file immediately following the last logical record of that file. Subsequent
WRITE statements referencing the file will add records to the file as though

the file had been opened with the OUTPUT phrase.

(16) When the EXTEND phrase is specified and the LABEL RECORDS clause

indicates label records are present, the execution of the OPEN statement

includes the following steps:

a. The beginning file labels are processed only in the case of a
single reel/unit file.

b. The beginning reel/unit labels on the last existing reel/unit are
processed as though the file was being opened with the INPUT phrase.

c. The existing ending file labels are processed as though the file
is being opened with the INPUT phrase. These labels are then deleted.

d. Processing then proceeds as though the file had been opened with
the OUTPUT phrase.

(17) The 1-0 phrase permits the opening of a mass storage file for both
input and output operations. Since this phrase implies the existence of the
file, it cannot be used if the mass storage file is being initially created.

(18) When the I~0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels are checked in accordance with the implementor ' s
specified conventions for input-output label checking.

IV-26

Sequential I-O - OPEN

b. The new labels are written in accordance with the implementor ' s
specified conventions for input-output label writing.

(19) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no
data records.

IV- 2 7

Sequential I-O - READ

4.3 THE READ STATEMENT

4.3.1 Function !

The READ statement makes available the next logical record from a file.

4.3.2 General Format

READ file-name RECORD

4.3.3 Syntax Rules

INTO identifier] AT END imperative-statement]

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated with

file-name must not be the'|Same storage area.

(2) The AT END phrase must be spedified if no applicable USE procedure

is specified for file-name.

4.3.4 General Rules

(1) The associated file must be open in the INPUT or 1-0 mode at the time
this statement is executed. (See The OPEN Statement on page IV-24.)

(2) The record to be made available by the READ statement is determined
as follows:

a. If the current record pointer was positioned by the execution of

the OPEN statement, the record pointed to by the current record pointer is
made available.

b. If the current record pointer was positioned by the execution of

a previous READ statement, the current record pointer is updated to point to
the next existing record in the file and then that record is made available.

(3) The execution of the READ statement causes the value of the FILE

STATUS data item, if any, associated with file-name to be updated. (See page
IV-1, 1-0 Status.)

(4) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record is
available to the object program prior to the execution of any statement
following the READ statement.

(5) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is movea from
the record area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. The implied

IV- 2 8

Sequential I-O - READ

MOVE does not occur if the execution of the READ statement was unsuccessful.

Any subscripting or indexing associated with identifier is evaluated after the
record has been read and inunediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a READ statement, the position of
current record pointer for that file is undefined, the execution of that READ
statement is unsuccessful „

(9) If the end of a reel or unit is recognized during execution of a READ

statement, and the logical end of the file has not been reached, the following

operations are executed:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

d. The first data record of the new reel/unit is made available.

(10) If a file described with the OPTIONAL phrase is not present at the

time the file is opened, then at the time of execution of the first READ state-
ment for the file, the AT END condition occurs and the execution of the READ

statement is unsuccessful. The standard end-of-file procedures are not per-

\ formed. (See page IV-4, The FILE-CONTROL Paragraph; page IV-24, The OPEN

' Statement; page IV-32, The USE Statement; and page IV-1, 1-0 Status.) Execu- tion of the program then proceeds as specified in general rule 12.

(11) If, at the time of the execution of a READ statement, no next logical
record exists in the file, the AT END condition occurs, and the execution of

the READ statement is considered unsuccessful. (See page IV-1, 1-0 Status.)

j (12) When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified

\ for this file, to indicate an AT END condition. (See page IV-1, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to the AT END imperative-statement. Any

j USE procedure specified for this file is not executed.

I
j c. If the AT END phrase is not specified, then a USE procedure must

I be specified, either explicitly or implicitly, for this file and that
I procedure is executed.

When the AT END condition occurs, execution of the input-output state-
ment which caused the condition is unsuccessful.

\

IV- 29

Sequential 1-0 - READ

(13) Following the unsuccessful execution of any READ statement, the con-i
tents of the associated record area and the position of the current record

pointer are undefined.

(lA) When the AT END condition has heen recognized, a REIAD statement for

that file must not be executed without first executing a successful CLOSE state-
ment followed by the execution of a successful OPEN statement for that file.

IV-30

Sequential I~0 - REWRITE

4.4 THE REWRITE STATEMENT

4.4.1 Function

The REWRITE statement logically replaces a record existing in a mass

storage file.

4.4.2 General Format

REWRITE record-name [FROM identifier]

4.4.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area,

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified,

4.4.4 General Rules

(1) The file associated with record-name must be a mass storage file and

must be open in the I-O mode at the time of execution of this stafement,

(See page IV-24, The OPEN Statement.)

(2) The last input-output statement executed for the associated file prior
to the execution of the REl^ITE stntemtnt must have been a successfully

executed READ statement. The MSGS logically replaces the record that was
accessed by the READ statement.

(3) The number of character positions in the record referenced by record-
name must be equal to the number of character positions in the record being
replaced .

(4) The logical record released by a successful execution of the RST'7B.ITE
statement is no longer available in the record area|unless the associated file
is named in a SAME RECORD AREA clause, in which case the logical record is

available to the program as a record of other files appearing in the same

SAME RECORD AREA clause as the associated 1-0 file, as well as to the file

associated with record-name.

(5) The execution of a REWRITE statement with the FROM phrase is equiva-
lent to the execution of :

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM

phrase. The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of the REWRITE statement.

(6) The current record pointer is not affected hy the execution of a
REWRITE statement.

(7) The execution of the PEWRITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated. (See page
IV- 1, 1-0 Status.)

a
IV- 31

Sequential I-O - USE

4.5 THE USE STATEMENT

4.5.1 Function

The USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

4.5.2 General Format

fEXCEPTION^

file-name- 1 |C, f ile-name-2TT
INPUT

USE AFTER STANDARD
ERROR

PROCEDURE ON ̂ OUTPUT

1-0

EXTEND

4.5.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed

by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used inter-
changeably.

(5) The files implicitly or explicitly referenced in a USE statement need
not all have the same organization or access.

4.5.4 General Rules

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the AT END condition, when the AT END phrase has not been specified in the

input-output statement.

(2) After execution of a USE procedure, control is returned to the
invoking routine.

(3) Within a USE procedure, there must not be any reference to any non-
declarative procedures. Conversely, in the nondeclarative portion there must

be no reference to procedure-names that appear in the declarative portion,

except that PERFORM statements may refer to a USE statement or to the proce-
dures associated with such a USE sta^tement.

IV- 32

Sequential I-O - USE

(4) Within a USE procedure, there must not be the execution of any state-
ment that would cause the execution of a USE procedure that had previously

been invoked and had not yet returned control to the invoking routine.

IV- 3 3

Sequential I-O - WRITE

4.6 THE WRITE STATEMENT

4.6.1 Function

The WRITE statement releases a logical record for an output file. It can

also be used for vertical positioning of lines within a logical page.

4.6.2 General Format

WRITE record-name I" FROM identifier- 1]

BEFORE
AFTER ADVANCING

identif ier-2 T

integer

LINE

LINES

mnemonxc-name
PAGE

; AT

END-OF-PAGE^
EOP imperative-s tatement

4.6, 3 Syntax Rules

(1) Record-name and identifier-1 must not reference the same storage area.

(2) When mnemonic-name is specified, the name is associated with a parti-
cular feature specified by the implementor. The mnemonic-name is defined in

the SPECIAL-NAMES paragraph of the Environment Division.

(3) The record-name is the name of a logical record in the File Section
of the Data Division and may be qualified.

(4) When identif ier-2 is used in the ADVANCING phrase, it must be the
name of an elementary integer data item.

(5) Integer or the value of the data item referenced by identifier- 2 [may
be zero.

(6) If the END-OF-PAGE phrase is specified, the LINAGE clause must be
specified in the file description entry for the associated file.

(7) The words END-OF-PAGE and EOP are equivalent.

(8) The ADVANCING mnemonic-name phrase cannot be specified when writing
a record to a file whose file description entry contains the LINAGE clause.

4.6.4 General Rules

(1) The associated file must be open in the OUTPUT jor EXTEND [mode at the

time of the execution of this statement. (See page IV-24, The OPEN Statement.)

(2) The logical record, released by the execution of the WRITE statement
is no longer available in the record area unless the associated file is named
in a SAME RECOlvD AREA clause or the execution of the WRITE statement was

unsuccessful due to a boundary violation. The logical record is also avail-

IV-34

Sequential 1-0 - WRITE

able to the program as a record of other files referenced in the same SAME

RECORD AREA clause as the associated output file, as well as to the file
associated with record-name.

(3) The results of the execution of the WRITE statement with the FROM

phrase is equivalent to the execution of :

a. The statement:

MOVE identifier- 1 TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information

in the area referenced by identifier-1 is available, even though the informa-

tion in the area referenced by record-name may not be. (See general rule 2.)

(4) The current record pointer is unaffected by the execution, of a WRITE
statement.

(5) The execution of the WRITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated. (See page

IV-1, I-O Status.)

(6) The maximum record size for a file is established at the time the

file is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the

program.

(8) The execution of the WRITE statement releases a logical record to the
operating system.

(9) [Both the ADVANCING phrase and the END-OF-PAGE phrase allow control of
the vertical positioning of each line on a representation of a printed page.
If the ADVANCING phrase is not used, automatic advancing will be provided by
the implementor to act as if the user had specified AFTER ADVANCING 1 LINE.

If the ADVANCING phrase is used, advancing is provided as follows:

a. If identifier-2 is specified, the representation of the printed
page is advanced the number of lines equal to the current value associated

with identifier-2.

b. If integer is specified, the representation of the printed page
is advanced the number of lines equal to the value of integer.

c. If mnemonic-name is specified, the representation of the printed
page is advanced according to the rules specified by the implcmcnLor for
that hardware device. , .

IV- 3 5

Seqiwntial I-O - WRITE

d. If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced according to rules a, b, and
c above.

e. If the AFTER phrase is used, the line is presented after the re-
presentation of the printed page is advanced according to rules a, b, and c

above .

f. If PAGE is specified, the record is presented on the logical page
before or after (depending on the phrase used) the device is repositioned to
the next logical page. { If the record to be written is associated with a file
whose file description entry contains a LINAGE clause, the repositioning is
to the first line that can be written on the next logical page as specified in
the LINAGE clause. | If the record to be written is associated with a file

whose file description entry does not contain a LINAGE clause, the reposition-
ing to the next logical page is accomplished in accordance with an impleraentor-

defined technique. If page has no meaning in conjunction with a specific
device, then advancing will be provided by the implementor to act as if the
user had specified BEFORE or AFTER (depending on the phrase used) ADVANCING 1
LINE.

(10) If the logical end of the representation of the printed p^ge is reach-
ed during the execution of a WRITE statement with the END-OF-PAGE phrase, the

imperative-statement specified in the END-OF-PAGE phrase is executed. The
logical end is specified in the LINAGE clause associated with record-name.

(11) An end-of-page condition is reached whenever the execution of a given
WRITE statement with the END-OF-PAGE phrase causes printing or spacing within
the footing area of a page body. This occurs when the execution of such a

WRITE statement causes the LINAGE-COUNTER to equal or exceed the value speci-
fied by integer-2 or the data item referenced by data-name-2 of the LINAGE

clause, if specified. In this case, the l^ITE statement is executed and then

the imperative statement in the END-OF-PAGE phrase is executed.

An automatic page overflow condition is reached whenever the execution

of a given WRITE statement (with or without an END-OF-PAGE phrase) cannot be
fully accommodated within the current page body.

This occurs when a WRITE statement, if executed, would cause the

LINAGE-COUNTER to exceed the value specified by integer-1 or the data item
referenced by data-name- 1 of the LINAGE clause. In this case, the record is
presented on the logical page before or after (depending on the phrase used)
the device is repositioned to the first line that can be written on the next

logical page as specified in the LINAGE clause. The imperative statement in

the END-OF-PAGE clause, if specified, is executed after the record is written
and the device has been repositioned.

If integer-2 or data-name-2 of the LINAGE clause is not specified, no
end-of-page condition distinct from the page overflow condition is detected.
In this case, the end-of-page condition and page overflow condition occur
simultaneously.

If integer-2 or data-name-2 of the LINAGE clause is specified, but

the execution of a given WRITE statement would cause LINAGE-COUNTER to

IV-36

Sequential I-O - mU'TE

simultaneously exceed the value of both integer-2 or the data item referenced

by data-name-2 and integer- 1 or the data item referenced by data-name- 1, then
the operation proceeds as if integer-2 or data-name-2 had not been specified.

(12) When an attempt is made to write beyond the externally defined boun-
daries of a sequential file, an exception condition exists and the contents

of the record area are unaffected. The following action takes place:

a. The value of the FILE STATUS data item, if any, of the associated

file is set to a value indicating a boundary violation. (See page IV- 1,
1-0 Status .)

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly or

implicitly specified for the file, that declarative procedure will then be
executed .

c. If a USE AFTER STANDARD EXCEPTION declarative is not explicitly
or implicitly specified for the file, the result is undefined.

(13) After the recognition of an end-of-reel or an end-of-unit of an output

file that is contained on more than one physical reel/unit, the WRITE state-
ment performs the following operations:

a. The standard ending reel/unit label procedure.

b. A reel/unit swap.

c. The standard beginning reel/unit label procedure.

I

I
I
I

i
i
1 I i

\ 1'

1 , I

1

I

liclative I-O - Intvoduction

1 . INTRODUCTION TO THE RELATIVE 1-0 MODULE

1.1 FUNCTION

The Relative 1-0 module provides a capability to access records of a mass

storage file in either a random or sequential manner. Each record in a rela-
tive file is uniquely identified by an integer value greater than zero which

specifies the record's logical ordinal position in the file.

1.2 LEVEL CHARACTERISTICS

Relative 1-0 Level 1 does not provide full COBOL facilities for the
FILE-CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this
module. Within the Procedure Division, the Relative I~0 Level 1 provides
limited capabilities for the READ and USE statements and full capabilities for

the CLOSE, DELETE, OPEN, REWRITE, and WRITE statements, as specified in the
formats of this module.

Relative 1-0 Level 2 provides full facilities for the FILE-CONTROL,
I-O-CONTROL, and FD entries as specified in the formats of this module. Within
the Procedure Division, the Relative 1-0 Level 2 provides full capabilities
for the CLOSE, DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements

as specified in the formats of this module, Tlie additional features available
in Level 2 include: the RESERVE clause, DYNA^IIC accessing, SAME RECOR.D AREA.

READ NEXT, and the entire START statement.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

Relative file organization is permitted only on mass storage devices. A
relative file consi.sts of records which are identified by relative record

numbers. The file may be thought of as composed of a serial string of areas,
each capable of holding a logical record. Each of these areas is denominated
by a relative record number. Records are stored and retrieved based on this
number. For example, the tenth record is the one addressed by relative record
number 10 and is in the tenth record area, whether or not records have been
written in the first through the ninth record areas.

1.3.2 Access Modes

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record nuiiibers of all records which
currently exist within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer. Tlie desired record is accessed by placing its
relative record number in a relative key data item.

In the dynamic access mode, the programmer may change at will from

sequential access to random access using appropriate form-S of input-output
statements .

V-1

Relative I-O - Introduction

1.3.3 Current Record Pointer

The current record pointer is a conceptual entity used in this document to

facilitate specification of the next record to be accessed within a given fil^,
The concept of the current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer is affected only
by the OPEN, | START, and READ statements.

1.3.4 1-0 Status

If the FILE STATUS clause is specified in a file control entry, a value is

placed into the specified two-character data item during the execution of an
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, [or START 1 s tat ement and before any
applicable USE procedure is executed, to indicate to the COBOL program the

status of that input-output operation.

1.3.4.1 Status Key 1

The leftmost character position of the FILE STATUS data item is known as

status key 1 and is set to indicate one of' the following conditions upon
completion of the input-output operation.

'0' indicates Successful Completion
*1' indicates At End

'2' indicates Invalid Key
'3' indicates Permanent Error

'9' indicates Implementor Defined

The meaning of the above indications are as follows:

0 - Successful Completion. The input-output statement was successfully
executed.

1 - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in the
file.

2 - Invalid Key. The input-output statement was unsuccessfully executed as
a result of one of the following:

Duplicate Key
No Record Found

Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessfully
executed as the result of an input-output error, such as data check, parity
error, or transmission error.

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor. Tliis
value is used only to indicate a condition not indicated by other defined

values of status key 1, or by specified combinations of the values of status
key 1 and status key 2.

V-2

Relative I-O - Introduction

1.3.4.2 Status Key 2

The rightmost character position of the FILE STATUS data item is known as

status key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follov/s:

1. If no further information is available concerning the input-output

operation, then status key 2 contains a value of '0'.

2. When status key 1 contains a value of '2' indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition as
follows :

a. A value of '2' in status key 2 indicates a duplicate key value.
An attempt has been made to write a record that would create a duplicate key
in a relative file.

b. A value of '3' in status key 2 indicates no record found. An
attempt has been made to access a record, identified by a key, and that
record does not exist in the file.

c. A value of '4' in status key 2 indicates a boundary violation.
An attempt has been made to write beyond the externally-defined boundaries of
a relative file. The implementor specifies the manner in which these bound-

aries are defined.

3. When status key 1 contains a value of '9' indicating an implementor-
defined condition, the value of status key 2 is defined by the implementor.

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the values of status key 1 and status

key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status

Key 1

Status Key 2

No Further
Information

(0)

Duplicate

Key

(2;

No Record
Found

(3)

Boundary

Violation

(4)

Successful

Completion (0)
X

At End (1) X

Invalid Key (2) X X X

Permanent

Error (3)
X

Implementor
Defined (9)

Relative I-O - Introduction

1.3.5 The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a

START, READ, WRITE, REWRITE or DELETE statement. For details of the causes

of the condition, see] page V-28, The START Statement ; | page V-23, The READ
Statement; page V-32 , The WRITE Statement; page V-26 , The REWRITE Statement;
and page V-19, The DELETE Statement.

Wlien the INVALID KEY condition is recognized, the MSGS takes these actions
in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this

file, to indicate an INVALID KEY condition. (See page V-2, 1-0 Status.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.

Any USE procedure specified for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is

specified, either explicitly or implicitly, for this file, that procedure is
executed.

When the INVALID KEY condition occurs, execution of the input-output state-
ment which recognized the condition is unsuccessful and the file is not

affected.

1.3.6 The AT END Condition

The AT END condition can occur as a result of the execution of a READ

statement. For details of the causes of the condition, see page V-23,
The READ Statement.

V-4

Relative I-O - FILE-COUTROL

2. ENVIRONMENT DIVISION IN THE RELATIVE I-Q MODULE

2.1 INPUT-OUTPUT SECTION

2.1,1 The FILE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry} ...

2.1.2 The File Control Entry

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT file-name

ASSIGN TO implementor-name-1 [, imp lemen tor-name- 2] ...

; RESERVE integer-1

AREA 1
"

.areas]

; ORGANIZATION IS RELATIVE

r ■ SEQUENTIAL [, RELATIVE KEY IS data-name-l]^
; ACCESS MODE IS \ , ̂ ^^^ s ;

DYNAMIC , RELATIVE KEY IS data-name- 1

[; FILE STATUS IS data-name-2] .

2.1.2.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file described in the Data Division must be named once and only

once as file-name in the FILE-CONTROL paragraph. Each file specified in the
file control entry must have a file description entry in the Data Division.

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

V-5

Relative I-O - FILE-CONTROL

(4) Data-name-2 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the File
Section, the Report Section, or the Communication Section.

(5) Data-name-1 and data-name-2 may be qualified.

(6) If a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be specified for that file.

(7) Data-name-1 must not be defined in a record description entry
associated with that file-name.

(8) The data item referenced by data-name-1 must be defined as an
unsigned integer.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by

file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number of input-
output areas allocated. If the RESERVE clause is specified, the number of

input-output areas allocated is equal to the value of integer-1. 'If the
RESERVE clause is not specified the number of input-output areas allocated
is specified by the implementor.

(3) The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created and cannot
subsequently be changed.

(4) When the access mode is sequential, records in the file are accessed
in the sequence dictated by the file organization. This sequence is the order

of ascending relative record numbers of existing records in the file.

(5) When the FILE STATUS clause is specified, a value will be moved by

the operating system into the data item specified by data-name-2 after the
execution of every statement that references that file either explicitly or

implicitly. This value indicates the status of execution of the statement.

(See page V-2, 1-0 Status.)

(6) If the access mode is random, the value of the RELATIVE KEY data item
indicates the record to be accessed.

(7)- When the access mode is dynamic, records in the file may be accessed
sequentially and/or randomly. (See general rules 4 and 6.)

(8) All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given record

specifies the record's logical ordinal position in the file. The first
logical record has a relative record number of one (1), and subsequent
logical records have relative record numbers of 2, 3, 4,

(9) The data item specified by data-name-1 is used to communicate a
relative record number between the user and the MSGS.

V-6

Relative I~0 - I-O-CONTRCL

2.1.3 The I-O-CONTROL Paragraph

2.1.3.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files,

2.1.3.2 General Format

I-O-CONTROL.

f^.-y _ _i ("integer- 1 RECORDS OF file~name"2~ RERUN ON I , '^^^^ EVERY iinteger-2 CLOCK-UNITS Iimplementor-namej ^ (s,condition-name

[; SAME [RECORD] | AREA FOR file-name-3 (, file-name-4] ...] ...

2.1.3.3 Syntax Rules

(1) The I-O-CONTROL paragraph is optional.

(2) File-name-1 must be a sequentially organized file.

(3) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause,

(4) More than one RERUN clause may be specified for a given file-name- 2 ,
subject to the following restriction:

a. When multiple integer-1 RECORDS clauses are specified, no two of
them may specify the same file-name-2.

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

(6) The two forms of the SAME clause (SAME AREA, | SAME RECORD AREA)!, are

considered separately in the following:

More than one SAME clause may be included in a program, however;

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD ARF-A
clause.

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SA>1E RECORD AREA clause. However, additional file-names not
appearing in that SAME AREA clause may also appear in that SAME RECORD A.REA
clause. The rule that only one of the files mentioned in a SAME AREA clause

can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

V-7

Relative I-O - I-O-CONTROL

(7) The files referenced in the SAME AREA! or SAME RECORD AREA| clause need
not all have the same organization or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is

recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a device specified by the implementor.

(2) There are four forms of the RERUN clause, based on the several

conditions under which rerun points can be established. The implementor i
must provide at least one of the specified forms of the RERUN clause.

a. When the integer- 1 RECORDS, clause is used. In this case, the
rerun information is v/ritten on the device specified by implementor-name,

which must be specified in the ON clause, whenever integer-1 records or

file-name-2 has been processed. File-name-2 may be either an input or
output file with any organization or access. I

b. IVhen the integer-2 CLOCK-UNITS clause is used. In this case, the
rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever an interval of time,

calculated by an internal clock has elapsed.

c. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written

on the device specified by implementor-name whenever a switch assumes a

particular status as specified by condition-name. In this case, the associated
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

d. Isfhen the condition-name clause is used and file-name-1 is
specified in the ON clause. In this case, the rerun information is written

on file-name-1, which must be an output file, whenever a switch assumed a

particular status as specified by condition-name. In this case, as in

paragraph c above, the ° associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated,

(3) The SAME AREA clause specifies that two or more files that do not

represent sort or merge files are to use the same memory area during process-
ing. The area being shared includes all storage areas (including alternate

areas) assigned to the files specified; therefore, it is not valid to have
more than one of the files open at the same time. (See syntax rule 6c on

page V-7.) ;

V-8

Relative I-O - I-O-CONTROL

(4) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing of the current logical record. All of
the files may be open at, the same time. A logical record in the SAME RECORD

AREA is considered as a logical record of each opened output file whose file-
name appears in this SAME RECORD AREA clause and of the most recently read

input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., records are aligned
on the leftmost character position.

V-9

3. DATA DIVISION IN THE RELATIVE I-O MODULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest

level of organization in the File Section. The File Section header is foll9W-
ed by a file description entry consisting of a level indicator (FD) , a file-

name and a series of independent clauses. The FD clauses specify the size of
the logical and physical records, the presence or absence of label records,

the value of irapleraentor-def ined label items, and the names of the data records
which comprise the file. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe .the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary

considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of

Levels on page 1-84 while the elements allowed in a record description are
shown in the data description skeleton on page 11-12.

V-10

Relative I-O - File Description

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.1 Function

The file description furnishes information concerning the physical struc-
ture, identification, and record names pertaining to a given file.

3.3.2 General Format

FD file-name

; BLOCK CONTAINS [integer-1 To] ^ f RECORDS 1
xnteger-2 |cHARACTERsj

[; RECORD CONTAINS [integer-3 To] integer-4 CHARACTERS]

RECORD IS] I (STANDARD^
LABEL (RECORD IS I

I RECORDS AREj OMITTED

VALUE OF implementor-name-1 IS
Udata-name-l

\literal-l

DATA

, implementor-name-2 IS

'record is

data-name- 2

I records are

literal-2

data-name-3 [, data-name-4] ' * * ̂ '

3.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file description
entry .

V-11

Relative I-O - BLOCK CONTAINS

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Format "RECORDS

BLOCK CONTAINS
[integer- 1 TO] integer-2 | .CHARACTERS

3.4.3 General Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one

physical record size.

c. The hardware device assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the RECORDS

phrase must not be used

a. Where logical records may extend across physical records.

b. The physical record contains padding (area not contained in a

logical record) .

c. Logical records are grouped in such a manner that an inaccurate

physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store

the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
physical record. | If integer-1 and integer-2 are both shown, they refer to
the minimum and maximum f ize of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

Relative I-O - DATA RECOWS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file.

3.5.2 General Format

3.5.3 Syntax Rules

(1) Data-name-1 and data-narae-2 are the names of data records and must

have 01 level-number record descriptions, with the same names, associated
with them.

3.5.4 General Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data rectrd. These records niay he of differ-

ing sizes, different formats, etc. The order in which they ari listed is not
s ignif icant .

(2) Conceptually, all data records vithin a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

data-name- ata-name-
-2] ...

V-13

Relative I-O - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3.6.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.6.2 General Format

LABEL
f RECOPD IS] 1 standard'] [RECORDS are] 1 OMITTED)

3.6. 3 Syntax Rules

(1) Tliis clause is required in every file description entry.

3.6.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to

which the file is assigned and the labeis conform to the implement6r ' s label
specifications .

V-14

Relative I-O - RECORD CONTAINS

3.7 THE RECORD CONTAINS CLAUSE

3.7.1 Function

The RECORD CONTAINS clause specifies the size of data records.

3.7.2 General Format

RECORD CONTAINS [integer- 1 TO] integer-2 CHARACTERS

3.7.3 General Rules

(1) The size of each data record is completely defined within the record

description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-1 and integer-2 are both
shown they refer to the minimum number of characters in the smallest size

data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi-

tions required to store the logical record, regardless of the types of charac-
ters used to represent the items within the logical record. The size of a

record is determined by the sum of the number of characters in all fixed

length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different

from the actual size of the record; see page 1-85, Selection of Character
Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35,
The USAGE Clause.

V-15

Relative I-O - VALUE OF

3.8 THE VALUE OF CLAUSE

3.8.1 Function '

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.8.2 General Format

VALUE OF implementor-name-l IS

, imp lemen tor-name- 2 IS

data-name- l|

literal- 1

data-name- 2

literal-2

3.8.3 Syntax Rules

(1) Data-name-1, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-1, data-name-2, etc., must be in the Working-Storage Section.

3.8.4 General Rules

(1) For an input file, the appropriate label routine checks to see if the

value of implementor-name-l is equal to the value of literal-1 , | or of
data-name-1, whichever has been specified.

For an output file, at the appropriate time the value of implementor-
name-1 is made equal to the value of literal-1 , | or of a data-name-1, whichever
has been specified.

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

V-16

Relative I-O - CLOSE

4. PROCEDURE DIVISION IN THE RELATIVE 1-0 MODULE

4.1 THE CLOSE STATEMENT

4.1.1 Function

The CLOSE statement terminates the processing of files with optional lock,

4.1.2 General Format

CLOSE f ile-name-l [wiTH LOCk] [, f ile-name-2 [wiTH LOCK] j ...

4.1.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the

same organization or access.

4.1.4. General Rules

(1) A CLOSE statement may only be executed for a file in an open mode„

(2) Relative files are classified as belonging to the category of

non-sequential single/multi-reel/unit. The results of executing each type
of CLOSE for this category of file are summarized in the following table.

CLOSE

Statement
Format

File Category =
Non-sequential

Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK
A,B

The definitions of the symbols in the table are given below. Where

the definition depends on whether the file is an input, output or input-output
file, alternate definitions are given; otherwise, a definition applies to

input, output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode) ;

If the file is positioned at its end and label records are

specified for the file, the labels are processed according to the iraplementor's
standard label convention. The behavior of the CLOSE statement when label

records are specified but not present, or when label records are not specified

but are present, is undefined. Closing operations specified by the implemento:
are executed. If the file is positioned at its end and label records are not

specified for the file, label processing does not take place but other closing

operations specified by the implementor are executed. If the file is position-
ed other than at its end, the closing operations specified by the implementor

are executed, but there is no ending label processing.

V-17

Relative I-O - CLOSE

Input Files and Input-Output Files (Random or Dynamic Access Mode) ;
Output Files (Random, Dynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are pro-

cessed according to the implementor ' s standard label convention. The behavior
of the CLOSE statement when label records are specified but not present, or
when label records are not specified but are present, is undefined. Closing

operations specified by the implementor are executed. If label records are

not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

B. File Lock

An implementor-def ined technique is supplied to insure that this
file cannot be opened again during this execution of this run unit.

(3) The action taken if a' file is in the open mode when a STOP RUN state-
ment is executed is specified by the implementor. The action taken for a

file that has been opened in a called program and not closed in that program

prior to the execution of a CANCEL statement for that program is also speci-
fied by the implementor.

(4) If a CLOSE statement has been executed for a file, no other statement
can be executed that references that file, either explicitly or implicitly,
unless an intervening OPEN statement for that file is executed.

(5) Following the successful execution of a CLOSE statement, the record

area associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the record
area undefined.

V-18

Relative I-O - DELETE

4.2 THE DELETE STATEMENT

4.2.1 Function i

The DELETE statement logically removes a record from a mass storage file.

4.2.2 General Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

4.2.3 Syntax Rules

(1) The INVALID KEY phrase must not be specified for a DELETE statement
which references a file which is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which ii not in sequential access mode and for which an
applicable USE procedure is not specified.

4.2.4 General Rules

(1) The associated file must be open in the 1-0 mode at the time of the
execution of this statement. (See page V-20, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state-
ment executed for file-name prior to the execution of the DELETE statement must

have been a successfully executed READ statement. The MSGS logically removes
from the file the record that was accessed by that READ statement.

(3) For a file in random or dynamic access mode, the MSGS logically removes
from the file that record identified by the contents of the RELATIVE KEY data

item associated with file-name. If the file does not contain the record

specified by the key, an INVALID KEY condition exists. (See page V-4 , The
INVALID KEY Gondition.)

(4) After the successful execution of a DELETE statement, the identified

record has been logically removed from the file and can no longer be accessed.

(5) The execution of a DELETE statement does not affect the contents of

the record area associated with file-name.

(6) The current record pointer is not affected by the execution of a
DELETE statement.

(7) The execution of the DELETE statement causes the value of the spec-

ified FILE STATUS data item, if any, associated with file-name to be updated.
(See page V-2, 1-0 Status.)

V-19

Relative I-O - OPEN

4.3 THE OPEN STATEMENT '

4.3.1 Function

The OPEN statement initiates the processing of files. It also perforins

checking and/or writing of labels and other input-output operations. ^

4.3.2 General Format

r INPUT file-name- 1 [, file-name-2]

OPEN J OUTPUT file-name-3 [, file-name-A]

1-0 file-name-5 [, file-name-6]

4.3.3 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the

same organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines the avail-
ability of the file and results in the file being in an open mode.

(2) The successful execution of the OPEN statement makes the associated

record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given

file, no statement can be executed that references that file, either explicit-
ly or implicitly.

(4) An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In Table I, Permissible

Statements, 'X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the relative

file organization and the open mode given at the top of the column.

V-20

Relative I-O - OPEN

File Access

Mode Statement

Open Mode

Input Output Input-Output

Sequential READ X X

WRITE X

REWRITE X

START X X

DELETE X

Random READ Y Y

WRITE X X

REWRITE X

START ;

DELETE X

Dynamic READ X X

WRITE X X

REWRITE X

START X X

DELETE X

Table 1. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, and 1-0 phrases in the
same program. Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement execution for that same file must be
preceded by the execution of a CLOSE statement, without the LOCK phrase, for
that file.

(6) Execution of the OPEN statement does not obtain or release the first
data record.

(7) If label records are specified for the file, the beginning labels are
processed as follows :

a. When the INPUT phrase is specified, the execution of the OPEN . ■
statement causes the labels to be checked in accordance with the implementor'
specified conventions for input label checking.

b. When the OUTPUT phrase is specified, the execution of the OPEN

statement causes the labels to be written in accordance with the implementor'
specified conventions for output label writing.

The behavior of the OPEN statement when label records are specified

but not present, or when label records are not specified but are present, is
undefined.

V-21

Relative I-O - OPEN

(8) The file description entry for f ile-name-l , f ile-name-2 , f ile-name-5 ,
or file-name-6 must be equivalent to that used when this file was created.

(9) For files being opened with the INPUT or 1-0 phrase, the OPEN state-
ment sets the current record pointer to the first record currently existing

within the file. If no records exist in the file, the current record pointer '
is set such that the next executed Format 1 READ statement for the file will ;

result in an AT END condition. I

(10) The 1-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

(11) When the 1-0 phrase is specified and the LABEL RECORDS clause indicates
label records are present, the execution of the OPEN statement includes the
following steps:

a. The labels ark checked in accordance with the implementor 's
specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor ' s
specified conventions for input-output label writing.

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no
data records.

Relative I-O - READ

4.4 THE READ STATEMENT

4.4.1 Function

For sequential access, the READ statement makes available the next].ogical
record from a file. For random access, the READ statement makes available a.
specified record from a mass storage file.

4.4.2 General Format

Format 1

READ file-name
["next] RECORD

^INTO identifier] [; AT END imperative-statement]

Format 2

READ file-name RECORD [iNTO identifier] [; INVALID KEY imperative-statement]

4.4.3 Syntax Rules -

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated with

file-name must not be the same storage area.

(2) Format 1 must be used for all files in sequential access mode.

(3) The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved sequentially.

(A) Format 2 is used for files in random access mode or for files in

dynamic access model when records are to be retrieved randomly.

(5) The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE procedure is specified for file-name.

4.4.4 General Rules

(1) The associated files must be open in the INPUT or 1-0 mode at the
time this statement is executed. (See page V-20, The OPEN Statement.)

(2) . The record to be made available by a Format 1 READ statement is deter-
mined as follows :

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by the

START or] OPEN statement and the record is still accessible through the path

indicated by the current record pointer; if the record is no longer access-
ible, which may have been caused by the deletion of the record, the current

record pointer is updated to point to the next existing record in the file
and that record is then made available.

V-23

Relative I-O - READ \
1

b. If the current record pointer was positioned by the execution of

a previous READ statement, the current record pointer is updated to point to
the next existing record in the file and then that record is made available. ,

(3) The execution of the READ statement causes the value of the FILE

STATUS data item, if any, associated with file-name to be updated. (See page
V-2, 1-0 Status.)

(4) Regardless of the method used to overlap access time with processing
time, the concept of the READ statement is unchanged in that a record is

available to the object program prior to the execution of any statement fol-
lowing the READ statement. \

(5) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of

any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the rules

specified for the MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was unsuccessful.

Any subscripting or indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read is available in
both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a Format 1 READ statement, the posi-
tion of current record pointer for that file is undefined, the execution of

that READ statement is unsuccessful.

(9) If, at the time of the execution of a Format 1 READ statement, no

• next logical record exists in the file, the AT END condition occurs, and the

execution of the READ statement is considered unsuccessful. (See page V-2,
1-0 Status.)

(10) When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if specified

for this file, to indicate an AT END condition. (See page V-2, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the

condition, control is transferred to the AT END imperative-statement. Any
USE procedure specified for this file is not executed.

c. If the AT END phrase is not specified, then a USE procedure must

be specified, either explicitly or implicitly, for this file, and that
procedure is executed.

When the AT END condition occurs, execution of the input-output state-
ment which caused the condition is unsuccessful.

V-24

Relative 1-0 - READ

(11) Following the unsuccessful execution of any READ statement, the con-
tents of the associated record area and the position of the current record

pointer are undefined.

(12) When the AT END condition has been recognized, a Format 1 READ state-
ment for that file must not be executed without first executing one of the

following :

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

(13) For a file for which dynamic access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next logical record
to be retrieved from the file as described in general rule 2.

(14) If the RELATIVE KEY phrase is specified, the execution of a Format 1
READ statement updates the contents of the RELATIVE KEY data item such that
it contains the relative record number of the record made available.

(15) The execution of a Format 2 READ statement sets the current record

pointer to, and makes available, the record whose relative record iiumber is

contained in the data item named in the RELATIVE KEY phrase for the file. If
the file does not contain such a record, the INVALID KEY condition exists and

execution of the READ statement is unsuccessful. (See page V-4, The INVALID
KEY Condition.)

V-25

Relative I-O - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function j

The REWRITE statement logically replaces a record existing in a mass ^
storage file.

4.5.2 General Format

REWRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.5.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may! be qualified.

(3) The INVALID KEY phrase must not be specified for a REWRITE statement
which references a file in sequential aCcess mode.

(A) The INVALID KEY phrase must be specified in the REWRITE statement for
files in the random|or dynamic] access mode for which an appropriate USE
procedure is not specified.

4.5.4 General Rules

(1) The file associated with record-name must be open in the 1-0 mode at
the time of execution of this statement. (See page V-20, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution of the
REWRITE statement must have been a successfully executed READ statement.

The MSGS logically replaces the record that was accessed by the READ state-
ment .

(3) The number of character positions in the record referenced by record-
name must be equal to the number of character positions in the record being

replaced.

(4) The logical record released by a successful execution of the REWRITE
statement is no longer available in the record area [unless the associated file

is named in a SAME RECORD AREA clause, in which case the logical record is

available to the program as a record of other files appearing in the same

SAME RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name.

(5) The execution of a REWRITE statement with the FROM phrase is equiva-
lent to the execution of :

MOVE identifier TO record-name

followed by the execution of the same REWITE statement without the FROM phrase
The contents of the record area prior to the execution of the implicit MOVE
statement have no effect on the execution of the REl^JRITE statement.

V-26

Relative I-O - PEWRITE

(6) The current record pointer is not affected by the execution of a
REWRITE statement.

(7) Tlie execution of the RKvJRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated. (See page

V-2, 1-0 Status.)

(8) For a file accessed in |either U-.u)dom lor dyncnri cj access mode, the MSGS
logically replaces the record specified by tiie contents of the RELATIVE KEY
data item associated with the file. If the file docs not contain the record

specified by the key, the INVALID KEY cmdJrion exists. (See page V-3, The
INVALID KEY Condition.) The updating cjcration does not take place and the
data in the record area is unaffected.

V-27

Belative I-O - START

4.6 THE START STATEMENT

4.6.1 Function

The START statement provides a basis for logical positioning within a
relative file, for subsequent sequential retrieval of records.

4.6.2 General Format

START file-narne

(is EQUAL TO

KEY < IS -
IS GREATER THAN

IS -

IS NOT LESS THAN

> data-name

Us NOT <

IN^'ALID KEY imperative-statemen
t]

NOTE; The required relational charjcters >

< ' , and

are nnt underlined to avoid confusion with other symbols

such dS 'ii' (greater than or equ.il to).

4.6.3 Syntax Rules

(1) Fil''-n;ime must be the name of j file with sequential or dynamic ncce.vs

(2) Data-name may be qualified.

(3) The INVALID KLT phrase must be specified if no apjvli cable US1-. proce-
dure is spei..if ied for file-name.

(4) Data-name, if specified, must be the data item specified in the
RELATIVE KEY phrase of the associated file control entry.

4.6.4 General Rules

(1) File-name must be open in the INPUT or 1-0 mode at the time that

the START statement is executed. (See page V-20, The OPEN Statement.)

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL
TO' is implied.

(3) The type of comparison specified by the relational operator in the
KEY phrase occurs between a key associated with a record in the file referenced

by file-name and a data item as specified in general rule 5.

a. The current record pointer is positioned to the first logical

record currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an
INVALID KEY condition exists, the execution of the START statement is

unsuccessful, and the position of the current record pointer is undefined.

(See V-4, llie INVALID KEY Condition.)

V-28

Relative I-O - START

(4) The execution of the START statement causes the value of the FILE

STATUS data item, if any, associated with file-name to be updated. (See

page V-2, 1-0 Status.)

(5) The comparison described in general rule 3 uses the data item

referenced by the RELATIVE KEY clause associated with file-name.

V-29

Relative I-O - USE

4.7 THE USE STATEMENT

4.7.1 Function

The USE statement specifies procedures for input-output error handling '
that are in addition to the standard procedures provided by the input-output
control system.

4.7.2 General Format

I file-name-l

USE AFTER STANDARD llf— PROCEDURE ON \ V^^^,^
 I ERROR J \ OUTPUT

f, file-name-2] ...

1-0

4.7.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section

header in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used
interchangeably.

(5) The files implicitly or explicitly referenced in a USE statement need

not all have the same organization or access.

4.7.4 General Rules >

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT END

phrase, respectively, has not been specified in the input-output statement.

(2) After execution of a USE procedure, control is returned to the

invoking routine.

(3) Within a USE procedure, there must not be any reference to any nonde-
clarative procedures. Conversely, in the nondeclarative portion there must be

no reference to procedure-names that appear in the declarative portion, except
that PERFORM statements may refer to a USE statement or to the procedures
associated with such a USE statement.

V-30

Relative I-O - USE

(4) Within a USE procedure, there must not be the execution of any state-
ment that would cause the execution of a USE procedure that had previously

been invoked and had not yet returned control to the invoking routine.

V-31

Relative I-O - WRITE

4.8 THE WRITE STATEMENT

4.8.1 Function

The WRITE statement releases a logical record for an output or input-outpul
file.

4.8.2 General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.8.3 Syntax Rules

(1) Record-name and identifier must not reference the same storage area.

(2) The record-name is the name of a logical record in the File Section
of the Data Division and may be qualified,

(3) The INVALID KEY phrase must be specified if an applicable USE proce-
dure is not specified for the associated file.

4.8.4 General Rules

(1) The associated file must be open in the OUTPUT or 1-0 mode at the

time of the execution of this statement. (See page V-20, The OPEN Statement.

(2) The logical record released by the execution of the WRITE statement
is no longer available in the record area unless |the associated file is named

in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc-
cessful due to an INVALID KEY condition. | The logical record is also available
to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as to the file associated

with record-name.

(3) The results of the execution of the WRITE statement with the FROM

phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this \iniITE statement.

After execution of the WRITE statement is complete, the information in
the area referenced by identifier is available, even though the information in

the area referenced by record-name may not be. (See general rule 2.)

(4) The current record pointer is unaffected by the execution of a WRITE
statement .

V-32

Relative 1-0 - WRITE

(5) The execution of the V^ITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated. (See page

V-2, I-O Status.)

(6) The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the

program.

(8) The execution of the WRITE statement releases a logical record to the

operating system.

(9) When a file is opened in the output mode, records may be placed into
the file by one of the following:

!

a. If the access mode is sequential, the WRITE statement will cause
a record to be released to the MSGS. The first record v/ill have a relative

record number of one (1) and subsequent records released will have relative
record numbers of 2, 3, 4, If the RELATIVE KEY data item has been

specified in the file control entry for the associated file, the telative
record number of the record just released will be placed into the RELATIVE
KEY data item by the MSGS during execution of the WRITE statement.

b. If the access mode is random or dynamic, prior to the execution of
the WRITE statement the value of the RELATIVE KEY data item must be initialized

in the program with the relative record number to be associated with the record
in the record area. That record is then released to the MSGS by execution of
the WRITE statement.

(10) When a file is opened in the 1-0 mode and the access mode is random
or dynamic, records are to be inserted in the associated file. The value of
the RELATIVE KEY data item must be initialized by the program with the relative
record number to be associated with the record in the record area. Execution
of a WRITE statement then causes the contents of the record area to be released
to the MSGS.

(11) The INVALID KEY condition exists under the following circumstances:

a. When the access mode is random or dynamic, and the RELATIVE KEY
data item specifies a record which already exists in the file, or

b. When an attempt is made to write beyond the externally defined
boundaries of the file.

(12) When the INVALID KEY condition is recognized, the execution of the
WRITE statement is unsuccessful, the contents of the record area are unaffected,

and the FILE STATUS data item, if any, of the associated file is set to a value
indicating the cause of the condition. Execution of the program proceeds

according to the rules stated in the INVALID KEY condition on page V-3.
(See page V-2, 1-0 Status.)

V-33

Indexed I-O - Introduction

1. INTRODUCTION TO THE INDEXED 1-0 MODULE

1.1 FUNCTION
i

The Indexed 1-0 module provides a capability to access records of a mass
storage file in either a random or sequential manner. Each record in an
indexed file is uniquely identified by the value of one or more keys within
that record.

1.2 LEVEL CHARACTERISTICS

Indexed 1-0 Level 1 does not provide full COBOL facilities for the FILE-
CONTROL, I-O-CONTROL, and FD entries as specified in the formats of this module.

Within the Procedure Division, the Indexed 1-0 Level 1 provides limited capabil-
ities for the READ and USE statements and full capabilities for the CLOSE,

DELETE, OPEN, REWRITE, and WRITE statements, as specified in the formats for
this module.

 , t

Indexed 1-0 Level 2 provides full facilities for the FILE-CONTROL, I-O-CONTROL,^
and FD entries as specified in the formats for this module. Within the Procedure

Division, the Indexed 1-0 Level 2 provides full capabilities for the CLOSE,
DELETE, OPEN, READ, REWRITE, START, USE, and WRITE statements as specified in
the formats for this module. The additional features available in Level 2

include: the RESERVE clause, DYNAMIC accessing, ALTERNATE KEYS, SAME RECORD

AREA, READ NEXT, and the entire START statement.

1.3 LANGUAGE CONCEPTS

1.3.1 Organization

A file whose organization is indexed is a mass storage file in which data
records may be accessed by the value of a key. A record description may include
one or more key data items, each of which is associated with an index. Each index
provides a logical path to the data records according to the contents of a data
item within each record which is the record key for that index.

The data item named in the RECORD KEY clause of the file control entry for a
file is the prime record key for that file. For purposes of inserting, updating
and deleting records in a file, each record is identified solely by the value of
its prime record key. This value must, therefore, be unique and must not be
changed when updating the record.

A data item named in the ALTERNATE RECORD KEY clause of the file control entry
for a file is an alternate record key for that file. The value of an alternate

record key may be non-unique if the DUPLICATES phrase is specified for it. These
keys provide alternate access paths for retrieval of records from the file.

1.3.2 Access Modes

In the sequential access mode, the sequence in which records are accessed

is the ascending order of the record key values. The order of retrieval of

records v/ithin a set of records having duplicate record key values is the
order in which the records were written into the set.

VI-1

Indexed I-O - Introduction

In the random access mode, the sequence in which records are accessed is

controlled by the programmer. The desired record is accessed by placing the
value of its record key in a record key data item.

In the dynamic access mode, the programmer may change at will from sequential

access to random access using appropriate forms of input-output statements.

1.3.3 Current Record Pointer

The current record pointer is a conceptual entity used in this document to

facilitate specification of the next record to be accessed within a given file.
The concept of the current record pointer has no meaning for a file opened in
the output mode. The setting of the current record pointer is affected only
by the OPEN, START, and READ statements.

1.3.4 1-0 Status
I

If the FILE STATUS clause is specified in a file control entry, a value is

placed into the specified two-character data item during the execution of an
OPEN, CLOSE, READ, WRITE, REWRITE, DELETE] or -START| statement and before any
applicable USE procedure is executed, to indicate to the COBOL program the

status of that input-output operation.

1.3.4.1 Status Key 1

The leftmost character position of the FILE STATUS data item is known as

status key 1 and is set to indicate one of the following conditions upon

completion of the input-output operation.

'0' indicates Successful Completion
'1' indicates At End
'2' indicates Invalid Key
'3' indicates Permanent Error

'9' indicates Implementor Defined

The meaning of the above indications are as follows:

0 - Successful Completion. The input-output statement was successfully
executed .

1 - At End. The Format 1 READ statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical record exists in
the file.

2 - Invalid Key. The input-output statement was unsuccessfully executed
as a result of one of the following:

Sequence Error
Duplicate Key

.'^'•r:' Record Found
Boundary Violation

3 - Permanent Error. The input-output statement was unsuccessful as the

result of an input-output error^ such as data check, parity error, or trans- mission error.

VI-2

Indexed I-O - Introduction

9 - Implementor Defined. The input-output statement was unsuccessfully
executed as a result of a condition that is specified by the implementor.
This value is used only to indicate a condition not indicated by other defined
values of status key 1, or by specified combinations of the value of status

key 1 and status key 2.

1.3.4.2 Status Key 2

The rightmost character position o°f the FILE STATUS data item is known as
status key 2 and is used to further describe the results of the input-output
operation. This character will contain a value as follows:

1. If no further information is available concerning the input-output

operation, then status key 2 contains a value of '0'.

2. When status key 1 contains a value of '0' indicating a successful com-

pletion, status key 2 may contain a value of '2' indicating a duplicate key.
This condition indicates :

a. For a READ statement, the key value for the current key of refer-
ence is equal to the value of that same key in the next record within the

current key of reference.

b. For a WRITE or REWRITE statement, the record just written created

a duplicate key value for at least one alternate record key for which
duplicates are allowed.

3. When status key 1 contains a value of '2' indicating an INVALID KEY
condition, status key 2 is used to designate the cause of that condition as
follows :

a. A value of '1' in status key 2 indicates a sequence error for a
sequentially accessed indexed file. The ascending sequence requirements of
successive record key values have been violated (see The WRITE Statement on

■page VI-33) , or the prime record key value has been changed by the COBOL
program between the successful execution of a READ statement and the execution
of the next REWRITE statement for that file.

b. A value of '2' in status key 2 indicates a duplicate key value.
An attempt has been made to write or rewrite a record that would create a
duplicate key in an indexed file.

c. A value of '3' in status key 2 indicates no record found. An
attempt has been made to access a record, identified by a key, and that record
does not exist in the file.

d. A value of '4' in status key 2 indicates a boundary violation. An
attempt has been made to write beyond the externally defined boundaries of an
indexed file. The implementor specifies the manner in which these boundaries
are defined.

4. When status key 1 contains a value of '9' indicating an implementor-
defined condition, the value of status key 2 is defined by the implementor.

VI- 3

Indexed I-O - Introduction

1.3.4.3 Valid Combinations of Status Keys 1 and 2

The valid permissible combinations of the value of status key 1 and status

key 2 are shown in the following figure. An 'X' at an intersection indicates
a valid permissible combination.

Status

Key 1

Status Key 2

No Further
Information

(0)

Sequence Error

(1)

Duplicate

Key

(2)

No Record

Found
(3)

Boundary

V"i nl fi t"i on V -1- 1 f -I . d \— -L- V ' 1 L

(A)

Successful

Completion (0)
X X

At End (1) X

Invalid Key (2) X X X X

Permanent

Error (3)
X

Implementor
Defined (9)

1.3.5 The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a | START,
READ, WRITE, REWRITE or DELETE statement. For details of the causes of the

condition, see [page VI-30, The START Statement; | page VI-24, The READ Statement;
page VI-33, The WRITE Statement; page VI-28, The REWRITE Statement; and page
VI- 20, The DELETE Statement.

When the INVALID KEY condition is recognized, the MSGS takes these actions
in the following order:

1. A value is placed into the FILE STATUS data item, if specified for this

file, to indicate an INVALID KEY condition. (See page VI-2, 1-0 Status.)

2. If the INVALID KEY phrase is specified in the statement causing the
condition, control is transferred to the INVALID KEY imperative statement.

Any USE procedure specif ied . for this file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure is

specified, either explicitly or implicitly, for this file, that procedure
is executed.

When the INVALID KEY condition occurs, executed of the input-output state-
ment which recognized the condition is unsuccessful and the file is not affected.

1,3.6 The AT END Condition

The AT END condition can occur as a result of the execution of a READ state-

ment. For details of the causey of the condition, see page VI-24, The READ
Statement.

VI-4 1^

Indexed I-O - FILE- CONTROL

2. ENVIRONMENT DIVISION IN THE INDEXED 1-0 MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

■ •

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL . {file-control-entry} ...

2.1.2 The File Control Entry-

2.1.2.1 Function

The file control entry names a file and may specify other file-related
information.

2.1.2.2 General Format

SELECT file-name

ASSIGN TO implementor-name-1 [, implement or-name-2] ...

; RESERVE integer- 1
AREA

[AREAS

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS \ RANDOM

DYNAMIC

[

RECORD KEY IS data-name- 1

ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

FILE STATUS IS data-name- 3] .

2.1.2.3 Syntax Rules

(1) The SELECT clause must be specified first in the file control entry.
The clauses which follow the SELECT clause may appear in any order.

(2) Each file described in the Data Division must be named once and only

once as file-name in the FILE-CONTROL paragraph. Each file specified in the
file control entry must have a file description entry in the Data Division.

VI-5

Indexed 1-0 - FILE-CONTROL

(3) If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

(4) Data-name-3 must be defined in the Data Division as a two-character
data item of the category alphanumeric and must not be defined in the File
Section, the Report Section, or the Communication Section.

(5) Data-name- 1 , j data-name-2 , | and data-name-3 may be qualified.

must each be (6) The data items referenced by data-name- 1 | and data-name-2
defined as a data item of the category alphanumeric within a record description
entry associated with that file-name.

(7) Neither data-name- 1 j nor data-name-2 1 can describe an Item whose size
is variable. (See page III-2, The OCCURS Clause.)

(8) Data-name-2 cannot reference an item whose leftmost character position
corresponds to the leftmost character position of an item referenced by data-
name-1 or by any other data-name-2 associated with this file.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the file referenced by

file-name to a storage medium.

(2) The RESERVE clause allows the user to specify the number of anput-
output areas allocated. If the RESERVE clause is specified, the number of

input-output areas allocated is equal to the value of integer-1. If the
RESERVE clause is not specified the number of input-output areas allocated
is specified by the implementor.

(3) The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created and cannot
subsequently be changed.

(4) When the access mode is sequential, records in the file are accessed
in the sequence dictated by the file organization. For indexed files this

sequence is the order of ascending record key values within a given key of
reference.

(5) When the FILE STATUS clause is specified, a value will be moved by

the operating system into the data item specified by data-name-3 after the
execution of every statement that references that file either explicitly or

implicitly. This value indicates the status of execution of the statement.

(See page VI-2, I-O Status.)

(6) If the access mode is random, the value of the record key data item
indicates the record to be accessed.

(7) When the access mode is dynamic, records in the file may be accessed

sequentially and/or randomly. (See general rules 4 and 6.)

VI-6

indexea i-u - nim-uuirrhUL

(8) The RECORD KEY clause specifies the record key that is the prime
record key for the file. The values of the prime record key must be unique
among records of the file, lliis prime record key provides an access path to
records in an indexed file.

(9) An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file. This alternate record key provides an
alternate access path to records in an indexed file.

(10) The data descriptions of data-name- 1 and data-name-2 as well as their
relative locations Vv^ithin a record must be the same as that used when the file

was created. [~The number of alternate keys for the file must also be the same as that used when the file was created.

(11) Tlie DUPLICATES phrase specifies that the value of the associated

alternate record key may be duplicated within any of the records in the file.

If the DUPLICATES phrase is not specified, the value of the associated alter-
nate record key must not be duplicated among any of the records in the file.

VI-7

I^viexed I-O - I-O- CONTROL

2.1.3 The I-O-CONTROL Paragraph

2.1.3.1 Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established and the memory area which is to be shared by different files.

2.1.3.2 General Format

T-O-CONTROL.

ffile-name-l 1 (integer-1 RECORDS OF file-name-2^
; RERUN ON \., \ EVERY ̂ integer-2 CLOCK-UNITS ' limplementor-name J ... ±^ lon-name

; SAME I [record] AREA FOR f ile-name-3 {, file-name-4) . . . j

2.1.3.3 Syntax Rules

(1) The I-O-CONTROL paragraph is optional.

(2) File-name-1 must be a sequentially organized file.

(3) When either the integer-1 RECORDS clause or the integer-2 CLOCK-UNITS
clause is specified, implementor-name must be given in the RERUN clause.

(4) I\fhen multiple integer-1 RECORDS clauses are specified, no two of

them may specify the same file-name-2,

(5) Only one RERUN clause containing the CLOCK-UNITS clause may be
specified.

(6) The two forms of the SAME clause (SAME AREA, | SAME RECORD AREA|) are
considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME AREA clause.

b. A file-name must not appear in more than one SAME RECORD AREA
clause .

c. If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in the SAME RECORD AREA clause. However, additional file-names not
appearing in that SAME AREA clause may also appear in that SAME RECORD AREA
clause. The rule that only one of the files mentioned in a SAME AREA clause

can be open at any given time takes precedence over the rule that all files
mentioned in a SAME RECORD AREA clause can be open at any given time.

VI-8

Indexed I-O - I-O-CONTROL

(7) The files referenced in the SAME AREA | or SAME RECORD AREA|rl.ause need
not all have the same organization or access.

2.1.3.4 General Rules

(1) The RERUN clause specifies when and where the rerun information is
recorded. Rerun information is recorded in the following ways:

a. If file-name-1 is specified, the rerun information is written on
each reel or unit of an output file and the implementor specifies where, on
the file, the rerun information is to be recorded.

b. If implementor-name is specified, the rerun information is
written as a separate file on a. device specified by the implementor.

(2) There are four forms of the RERUN clause, based on the several
conditions under which rerun points can be established. The implementor
must provide at least one of the specified forms of the RERUN clause.

a. When the integer-1 RECORDS clause is used. In this case, the

rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever integer-1 records of
file-name-2 has been processed. File-name-2 may be either an input or
output file with any organization or access.

b. When the integer-2 CLOCK-UNITS clause is used. In this case, the

rerun information is written on the device specified by implementor-name,
which must be specified in the ON clause, whenever an interval of time,
calculated by an internal clock, has elapsed.

c. When the condition-name clause is used and implementor-name is
specified in the ON clause. In this case, the rerun information is written

on the device specified by implementor-name whenever a switch assumes a
particular status as specified by condition-name. In this case, the associated
switch must be defined in the SPECIAL-NAMES paragraph of the Configuration
Section of the Environment Division. The implementor specifies when the
switch status is interrogated.

d. When the condition-name clause is used and file-name-1 is
specified in the ON clause. In this case, the rerun information is written

on file-name-1, which must be an output file, whenever a switch assumes a
particular status as specified by condition-name. In this case, as in

paragraph c above, the .associated switch must be defined in the SPECIAL-NAMES
paragraph of the Configuration Section of the Environment Division. The
implementor specifies when the switch status is interrogated.

(3) The SAME AREA clause specifies that two or more files that do not

represent sort or merge files are to use the same memory area during process-
ing. The area being shared includes all storage areas assigned to the files

specified; therefore, it is not valid to have more than one of the files open

at the same time. (See syntax rule 6c on page VI-8.)

VI-9

Indexed I-O - I-O-CONTROL

(4) The SAME RECORD AREA clause specifies that two or more files are to

use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD

AREA is considered as a logical record of each opened output file whose file-
name appears in this SAME RECORD AREA clause and of the most recently read

input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area, i.e., records are aligned
on the leftmost character position.

§

VI-10

Indexed I-O - File Section

3. DATA DIVISION IN THE INDEXED 1-0 MODULE

3.1 FILE SECTION

In a COBOL program the file description entry (FD) represents the highest
level of organization in the File Section. The File Section header is followed

by a file description entry consisting of a level indicator (FD) , a file-name
and a series of independent clauses. The FD clauses specify the size of the

logical and physical records, the presence or absence of label records, the

value of implementor-def ined label items, and the names of the data records
which comprise the file. The entry itself is terminated by a period.

3.2 RECORD DESCRIPTION STRUCTURE

A record description consists of a set of data description entries which
describe the characteristics of a particular record. Each data description

entry consists of a level-number followed by a data-name if required, followed
by a series of independent clauses as required. A record description has a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate
entries. The structure of a record description is defined in Concepts of

Levels on page 1-84 while the elements allowed in a record description are
shown in the data description skeleton on page 11-12.

VI- 11

Indexed I-O - File Description

3.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.3.1 Function

The file description furnishes information concerning the physical struc-
ture, identification, and record names pertaining to a given file.

3.3.2 General Format

FD file-name

; BLOCK CONTAINS
[integer- 1 TO] integer-2

(RECORDS
1 CHARACTERS [

[; RECORD CONTAINS [integer-3 To] integer-4 CHARACTERS]

TARFT (record is 1 (STANDARD^

; LABhL I RECORDS | OMITTED j

VALUE OF implementor-name-1 IS
data-name- 1

(_literal-l

I

; DATA

, implementor-name-2 IS

RECORD IS

data-name- 2

literal-2

(record is 1 , ̂ o r J A 1

|rECORDS AHe] data-name-3 [, data-name-4j
 ... J .

3.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

and must precede the file-name.

• (2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) One or more record description entries must follow the file
description entry.

3.4 THE BLOCK CONTAINS CLAUSE

3.4.1 Function

The BLOCK CONTAINS clause specifies the size of a physical record.

3.4.2 General Format ' RECORDS

BLOCK CONTAINS
[integer-1 TO] integer-2 |

CHARACTERS.

3.4.3 General Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one

physical record size.

c. The hardware device assigned to the file has more than one

physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size.

(2) The size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the RECORDS
phrase must not be used

a. Where logical records may extend across physical records.

b. The physical record contains padding (area not contained in a
logical record) .

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
physical record, j If integer-1 and integer-2 are both shown, they refer to
the minimum and maximum size of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

VI-13

Indexed I-O - DATA RECORDS

3.5 THE DATA RECORDS CLAUSE

3.5.1 Function

The DATA RECORDS clause serves only as documentation for the names of data
records with their associated file,

3.5.2 General Format

3.5.3 Syntax Rules

(1) Data-name-l and data-name-2 are the names of data records and must
have 01 level-number record descriptions, with the same names, associated
with them.

3.5.4 General Rules

(1) The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may be of differ-

ing sizes, different formats, etc. The order in which they are listed is not

significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

data-name-
i-1 [, dat a-name'

2]

VI- 14

Indexed 1-0 - LABEL RECORDS

3.6 THE LABEL RECORDS CLAUSE

3.6.1 Function

The LABEL RECORDS clause specifies whether labels are present.

3.6.2 General Format

r RECORD IS ■] f STANDARD'^
I RECORDS ARE I [OMITTED

3.6.3 Syntax Rules

(1) This claiise is required in every file description entry.

3.6.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to

which the file is assigned and the labels conform to the implementor 's label
specifications.

VI- 15

Indexed I-O - RECORD CONTAINS „
i

3.7 THE RECORD CONTAINS CLAUSE

3.7.1 Function

The RECORD CONTAINS clause specifies the size of data records. '

3.7.2 General Format

RECORD CONTAINS [integer- 1 TO] integer-2 CHARACTERS

3.7.3 General Rules

(1) The size of each data record is completely defined within the record
description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact
number of characters in the data record. If integer-1 and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character posi-

tions required to store the logical record, regardless of the types of charac-
ters used to represent the items within the logical record. The size of a

record is determined by the sum of the number of characters in all fixed

length elementary items plus the sura of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different

from the actual size of the record; see page 1-85, Selection of Character

Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35,
The USAGE Clause.

VI-16

Indexed I-O - VALUE OF

3.8 THE VALUE OF CLAUSE

3.8.1 Function !

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

3.8.2 General Format

data-name- 1]

VALUE OF implementor-name-1 IS yij^tej-al-l '

^ (data-name-2)
, implementor-naine-2 IS y2.iteral-2

3.8.3 Syntax Rules

(1) Data-name-l, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with
the USAGE IS INDEX clause.

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section,

3.8.4 General Rules

(1) For an input file, the appropriate label routine checks to see if the

value of implementor-name-l is equal to the value of literal-1
data-name-l, whichever has been specified.

or of

For an output file, at the appropriate time the value of implementor-

name-1 is made equal to the value of literal-1 , I or of a data-name-l, whichever" has been specified.

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

VI-17

Indexed I-O - CLOSE

4. PROCEDURE DIVISION IN THE INDEXED 1-0 MODULE

4.1 THE CLOSE STATEMENT

4.1.1 Function ^

The CLOSE statement terminates the processing of files with optional lock.

4.1.2 General Format

CLOSE file-name- 1 [WITH LOCK.] [, f ile-name-2 [WITH LOCK]] ...

4.1.3 Syntax Rules

(1) The files referenced in the CLOSE statement need not all have the same
organization or access.

4.1.4 General Rules

(1) A CLOSE statement may only be executed for a file in an open mode.

(2) Indexed files are classified as belonging to the category 'of
non-sequential single/multi-reel/unit. The results of executing each type
of CLOSE for this category of file are summarized in the following table.

CLOSE

Statement
Format

File Category =
Non-sequential

Single/Multi-Reel/Unit

CLOSE A

CLOSE WITH LOCK A,B
f

The definitions of the symbols in the table are given below. Where

the definition depends on whether the file is an input, output, or input-output
file, alternate definitions are given; otherwise, a definition applies to

input, output, and input-output files.

A. Close File

Input Files and Input-Output Files (Sequential Access Mode) ;

If the file is positioned at its end and label records are

specified for the file, the labels are processed according to the implementor ' s
standard label convention. The behavior of the CLOSE statement when label

records are specified but not present, or when label records are not specified
but are present, is undefined. Closing operations specified by the implementor
are executed. If the file is positioned at its end and label records are not

specified for the file, label processing does not take place but other closing
operations specified by the implementor are executed. If the file is positioned
other than at its end, the closing operations specified by the implementor are
executed, but there is no ending label processing.

VI-18

i

Indexed I-O - CLOSE

Input Flies and Input-Output Files (Random or Dynamic Access Mode) ;
Output Files (Random, Dynamic, or Sequential Access Mode):

If label records are specified for the file, the labels are pro-

cessed according to the implementor ' s standard label convention. The behavior
of the CLOSE statement when label records are specified but not present, or

when label records are not specified but are present, is undefined. Closing
operations specified by the implementor are executed. If label records are

not specified for the file, label processing does not take place but other
closing operations specified by the implementor are executed.

B. File Lock

An implement or-defined technique is supplied to insure that this
file cannot be opened again during this execution of this run unit.

(3) The action taken if a file is in the open mode when a STOP RUN state-
ment is executed is specified by the implementor. The action taken for a

file that has been opened in a called program and not closed in that program

prior to the execution of a CANCEL statement for that program is also speci-
fied by the implementor.

(4) If a CLOSE statement has been executed for a file, no other statement

can be executed that references that file, either explicitly or implicitly,
unless an intervening OPEN statement for that file is executed.

(5) Following the successful execution of a CLOSE statement, the record

area associated with file-name is no longer available. The unsuccessful
execution of such a CLOSE statement leaves the availability of the record
area undefined.

VI- 19

Indexed I-O - DELETE

4.2 THE DELETE STATEMENT

4.2.1 Function i

The DELETE statement logically removes a record from a mass storage file.

4.2.2 General Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

4.2.3 Syntax Rules

(1) The INVALID KEY phrase must not be specified for a DELETE statement
which references a file is in sequential access mode.

(2) The INVALID KEY phrase must be specified for a DELETE statement which
references a file which is not in sequential access mode and for which an
applicable USE procedure is not specified.

4.2.4 General Rules

(1) The associated file must be open in the 1-0 mode at the time of the
execution of this statement. (See page VI-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state-
ment executed for file-name prior to the execution of the DELETE statement

must have been a successfully executed READ statement. The MSGS logically
removes from the file the record that was accessed by that READ statement.

(3) For a file in random! or dynamic | access mode, the MSGS logically
removes from the file the record identified by the contents of the prime

record key data item associated with file-name. If the file does not contain
the record specified by the key, an INVALID KEY condition exists. (See page

VI-4, The INVALID KEY Gondition.)

(4) After the successful execution of a DELETE statement, the identified

record has been logically removed from the file and can no longer be accessed

(5) The execution of a DELETE statement does not affect the contents of

the record area associated with file-name.

(6) The current record pointer is not affected by the execution of a
DELETE statement.

(7) The execution of the DELETE statement causes the value of the spec-

ified FILE STATUS data item, if any, associated with file-name to be updated.
(See page VI-2, 1-0 Status.)

VI-20

Indexed I-O - OPEN

4.3 THE OPEN STATEMENT

4.3.1 Function

The OPEN statement initiates the processing of files. It also perforins

checking and/or writing of labels and other input-output operations.

4.3.2 General Format

C INPUT file-name- 1 [, file-name-2]
OPEN V OUTPUT file-name-3 [, file-name-A] ...

(1-0 file-name-5 [, file-name-6] ...

4.3.3 Syntax Rules

(1) The files referenced in the OPEN statement need not all have the

same organization or access.

4.3.4 General Rules

(1) The successful execution of an OPEN statement determines t:he avail-
ability of the file and results in the file being in an open mode.

(2) The successful execution of the OPEN statement makes the associated

record area available to the program.

(3) Prior to the successful execution of an OPEN statement for a given

file, no statement can be executed that references that file, either explicit-
ly or implicitly.

(A) An OPEN statement must be successfully executed prior to the execution

of any of the permissible input-output statements. In Table 2, Permissible

Statements, 'X' at an intersection indicates that the specified statement,
used in the access mode given for that row, may be used with the indexed file
organization and the open mode given at the top of the column.

VI-21

Indexed I-O - OPEN

Open Mode

Mode Statement Input Output Input-Ouput
— — "

Sequential
X X

X

■R FUR TT F X

CT ART X X

DELETE X
 _

Random READ X X

T.rn T TV
X X

iXXjVv JXX X Ij
X

QT AR T
— _

TIFT FTF X

Dynamic
R FAD X X

TJR T TF W K X X Hi
X X

RECITE
X

START
X X

DELETE
X

Table 2. Permissible Statements

(5) A file may be opened with the INPUT, OUTPUT, and 1
-0 phrases in the

same program. Following the initial execution of an
 OPEN statement for a

file each subsequent OPEN statement execution for that
 same file must be

preceded by the execution of a CLOSE statement, withou
t the LOCK phrase, for

that file.

(6) Execution of the OPEN statement does not obtain
 or release the first

data record.

(7) If label records are specified for the file, th
e beginning labels are

processed as follows:

a \^en the INPUT phrase is specified, the executio
n of the OPEN

statement 'causes the labels to be checked in accordance
 with the implementor s

specified conventions for input label checking.

b Wlien the OUTPUT phrase is specified, the execution of t
he OPEN ̂

statement causes the labels to be written in accorda
nce with the implementor s

specified conventions for output label writing.

The behavior of the OPEN statement when label rec
ords are specified

but not present, or when label records are not s
pecified but are present, is

undefined .

VI-22

(8) The file description entry for f ile-name-l , file-name-2, f ile-name-5 ,
or file-name-6 must be equivalent to that used when this file was created.

(9) For files being opened with the INPUT or I-O phrase, the OPEN state-
ment sets the current record pointer to the first record currently existing

within the file. For indexed files, the prime record key is established as
the key of reference and is used to determine the first record to be accessed.
If no records exist in the file, the current record pointer is set such that
the next executed Format 1 READ statement for the file will result in an AT
END condition.

(10) The 1-0 phrase permits the opening of a file for both input and output
operations. Since this phrase implies the existence of the file, it cannot be
used if the file is being initially created.

(11) When the 1-0 phrase is specified and the LABEL RECORDS clause indi-
cates label records are present, the execution of the OPEN statement includes

the following steps :

a. The labels are checked in accordance with the implementor 's
specified conventions for input-output label checking.

b. The new labels are written in accordance with the implementor ' s
specified conventions for input-output label writing.

(12) Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file contains no
data records.

VI-23

Indexed I-O - READ

4.4 THE READ STATEMENT

4.4.1 Function

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a mass storage file.

4.4.2 General Format

Format 1

READ file-name [next] record [into identifier]

[; AT END imperative-statement]

Format 2

READ file-name RECORD [INTO identifier]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

4.4.3 Syntax Rules

(1) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the storage area which is the

record area associated with file-name must not be the same storage area.

(2) Data-name must be the name of a data item specified as a record key
associated with file-name.

(3) Data-name may be qualified.

(4) Format 1 must be used for all files in sequential access mode.

(5) The NEXT phrase must be specified for files in dynamic access mode,
when records are to be retrieved sequentially.

(6) Format 2 is used for files in random access mode or for files in

dynamic access model when records are to be retrieved randomly.

(7) The INVALID KEY phrase or the AT END phrase must be specified if no

applicable USE procedure is specified for file-name.

4.4.4 General Rules

(1) The associated file must be open in the INPUT or 1-0 mode at the
time this statement is executed. (See page VI-21, The OPEN Statement.)

VI-24

Indexed I-O - READ

(2) The record to be made available by a Format 1 READ statement is
determined as follows:

a. The record, pointed to by the current record pointer, is made
available provided that the current record pointer was positioned by the

START or I OPEN statement and the record is still accessible through the path
indicated by the current record pointer; if the record is no longer accessible.
which may have been caused by the deletion of the record or a change in an
alternate record key, the current record pointer is updated to point to the
next existing record within the established key of reference and that record
is then made available.

b. If the current record pointer was positioned by the execution of
a previous READ statement , the current record pointer is updated to point to
the next existing record in the file with the established key of reference and
then that record is made available.

(3) The execution of the READ statement causes the value of the FILE STATUS

data item, if any, associated with file-name to be updated. (See page VI-2 ,
1-0 Status.)

(4) Regardless of the method used to overlap access time with processing

time, the concept of the READ statement is unchanged in that a record is

available to the object program prior to the execution of any statement fol-
lowing the READ statement.

(5) \^en the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of
any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ statement.

(6) If the INTO phrase is specified, the record being read is moved from
the record area to the area specified by identifier according to the rules
specified for the MOVE statement without the CORRESPONDING phrase. The implied
MOVE does not occur if the execution of the READ statement was unsuccessful.

Any subscripting or indexing associated with identifier is evaluated after the
record has been read and immediately before it is moved to the data item.

(7) When the INTO phrase is used, the record being read is available in

both the input record area and the data area associated with identifier.

(8) If, at the time of execution of a Format 1 READ statement, the posi-
tion of current record pointer for that file is undefined, the execution of

that READ statement is unsuccessful.

(9) If, at the time of the execution of a Format 1 READ statement, no next

logical record exists in the file, the AT END condition occurs, and the execu-
tion of the READ statement is considered unsuccessful. (See page VI-2, 1-0

Status.)

(10) When the AT END condition is recognized the following actions are
taken in the specified order:

VI-25

Indexed I-O - READ

.1

a. A value is placed into the FILE STATUS data item, if specified for !

this file, to indicate an AT END condition. (See page VI-2, 1-0 Status.)

b. If the AT END phrase is specified in the statement causing the j
condition, control is transferred to the AT END imperative statement. Any
USE procedure specified for this file is not executed. I

I

c. If the AT END phrase is not specified, then a USE procedure must
be specified, either explicitly or implicitly, for this file, and that

procedure is executed. n |

When the AT END condition occurs, execution of the input-output state- i
ment which caused the condition is unsuccessful. s ■:

(11) Following the unsuccessful execution of any READ statement, the con-
tents of the associated record area and the position of the current record

pointer are undefined. For indexed files the key of reference is also
undefined.

(12) When the AT END condition has been recognized, a Format 1 READ state-
ment for that file must not be executed without first executing one of the

following:

a. A successful CLOSE statement followed by the execution of a '
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

(13) For a file for which dynamic access mode is specified, a Format 1 READ
statement with the NEXT phrase specified causes the next logical record to be .
retrieved from that file as described in general rule 2.

(14) For an indexed file being sequentially accessed, records having the

same duplicate value in an alternate record key which is the key of refer-
ence are made available in the same order in which they are released by

execution of WRITE statements, or by execution of RH-JRITE statements which
create such duplicate values.

(15) For an indexed file if the KEY phrase is specified in a Format 2 READ

statement, data-name is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for the
file until a different key of reference is established for the file.

(16) If the KEY phrase is not specified in a Format 2 READ statement, the
prime record key is established as the key of reference for this retrieval.
If the dynamic access mode is specified, this key of reference is also used
for retrievals by any subsequent executions of Format 1 READ statements for
the file until a different key of reference is establishe d for the file.

(17) Execution of a Format 2 READ statement causes the value of the key of

reference to be compared with the value contained in the corresponding data
item of the stored records in the file, until the first record having an equal

VI- 2 6

Indexed I-O - READ

value is found. The current record pointer is positioned to this record which
is then made available. If no record can be so identified, the INVALID KEY
condition exists and execution of the READ statement is unsuccessful. (See

page VI-4, The INVALID KEY Condition.)

VI- 2 7

Indexed I-O - REWRITE

4.5 THE REWRITE STATEMENT

4.5.1 Function

The REWRITE statement logically replaces a record existing in a mass ^
storage file.

4.5.2 General Format

REWRITE record-name FROM identifier] [; INVALID KEY imperative-statement]

4.5.3 Syntax Rules

(1) Record-name and identifier must not refer to the same storage area.

(2) Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified in the REIsTRITE statement for

files for which an appropriate USE procedure is not specified.

4.5.4 General Rules

(1) The file associated with record-name must be open in the 1-0 mode at
the time of execution of this statement. (See page VI-21, The OPEN Statement.)

(2) For files in the sequential access mode, the last input-output state-
ment executed for the associated file prior to tlie execution of the REV/RITE

statement must have been a successfully executed READ statement. The MSGS

logically replaces the record that was accessed by the READ statement.

(3) The number of character positions in the record referenced by record-
name must be equal to the number of character positions in the record being

replaced.

(4) The logical record released by a successful execution of the REIfRITE
statement is no longer available in the record area [unless the associated file

is named in a SAllE RECORD AREA clause, in which case the logical record is
available to the program as a record of other files appearing in the same

SAllE RECORD AREA clause as the associated 1-0 file, as well as to the file
associated with record-name .

(5) The execution of a REWRITE statement with the FROM phrase is equiva-
lent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without the FROM
phrase. The contents of the record area prior to the execution of the im.plicit
MOVE statement have no effect on the execution of the RElTlvITE statement.

(6) The current record pointer is not affected by the execution of n
REWRITE statement.

VI-28

Indexed I-O - REWRITE

(7) The execution of the REWRITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated. (See page

VI-2, 1-0 Status.)

(8) For a file in the sequential access mode, the record to be replaced is

specified by the value contained in the prime record key. Wien the REWRITE
statement is executed the value contained in the prime record key data item of
the record to be replaced must be equal to the value of the prime record key
of the last record read from this file.

(9) For a file in the random or dynamic access mode, the record to be
replaced is specified by the prime record key data item.

(10) The contents of alternate record key data items of the record being

rewritten may differ from those in the record being replaced. The MSGS
utilizes the content of the record key data items during the execution of the

RE\aJRITE statement in such a way that subsequent access of the record may be
made based upon any of those specified record keys.

(11) The INVALID KEY condition exists when:

a. The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not equal to the
value of the prime record key of the last record read from this file, or

b. The value contained in the prime record key data item does not

equal that of any record stored in the file, or

c. The value contained in an alternate record key data item for which

a DUPLICATES clause has not been specified is equal to that of a record
already stored in the file.

The updating operation does not take place and the data in the record

area is unaffected. (See page VI-4, The INVALID KEY Condition.)

VI- 2 9

Indexed I-O - START

4.6 THE START STATEMENT

4.6.1 Function i

The START statement provides a basis for logical positioning within an
indexed file, for subsequent sequential retrieval of records.

4.6.2 General Format

START file-name KEY

IS EQUAL TO

IS =
IS GREATER THAN

IS >
IS NOT LESS THAN

[is NOT <

1^; INVALID KEY imperative-statement]

data-name

I

NOTE: The required relational characters '>', '<', and
are not underlined to avoid confusion with other symbols

such as '>' (greater than or equal to) .

4.6.3 Syntax Rules

(1) File-name must be the name of an indexed file.

(2) File-name must be the name of a file with sequential or dynamic access.

(3) Data-name may be qualified.

(4) The INVALID KEY phrase must be specified if no applicable USE proce-
dure is specified for file-name.

(5) If file-name is the name of an indexed file, and if the KEY phrase is

specified, data-name may reference a data item specified as a record key asso-
ciated with file-name, or it may reference any data item of category alpha-

numeric subordinate to the data-name of a data item specified as a record key
associated with file-name whose leftmost character position corresponds to
the leftmost character position of that record key data item.

4.6.4 General Rules

(1) File-name must be open in the INPUT or 1-0 mode at the time that
the START statement is executed. (See page VI-21, The OPEN Statement.)

(2) If the KEY phrase is not specified the relational operator 'IS EQUAL
TO' is implied.

(3) The type of comparison specified by the relational operator in the KEY
phrase occurs between a key associated with a record in the file referenced by

file-name and a data item as specified in general rule 5. If file-name refer-
ences an indexed file and the operands are of unequal size, comparison proceeds

as though the longer one were truncated on the right such that its length is

VI-30

Indexed I-O - START

equal to that of the shorter. All other nonnumeric comparison rules apply
except that the presence of the TROGRA^I COLLATING SEQUENCE clause will have

no effect on the comparison. (See page 11-42, Comparison of Nonnumeric ,
Operands .)

a. The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the comparison.

b. If the comparison is not satisfied by any record in the file, an

INVALID KEY condition exists, the execution of the START statement is unsuc-
cessful, and the position of the current record pointer is undefined. (See

page VI-4, The INVALID KEY Condition.)

(4) The execution of the START statement causes the value of the FILE

STATUS data item, if any, associated with file-name to be updated. (See
page VI-2, 1-0 Status.)

(5) If the KEY phrase .'is specified, the comparison described in general
rule 3 uses the data item referenced by data-name.

(6) If the KEY phrase is not specified, the comparison described in gen-
eral rule 3 uses the data item referenced in the RECORD KEY clause associated

with file-name.

(7) Upon completion of the successful execution of the START statement,

a key of reference is established and used in subsequent Format 1 READ state-

ments as follows: (See page VI-24, The READ Statement.)

a. If the KEY phrase is not specified, the prime record key specified

for file-name becomes the key of reference.

b. If the KEY phrase is specified, and data-name is specified as a
record key for file-name, that record key becomes the key of reference.

c. If the KEY phrase is specified, and data-name is not specified as
a record key for file-name, the record key vzhose leftmost character position
corresponds to the leftmost character position of the data item specified by

data-name, becomes the key of reference.

(8) If the execution of the START statement is not successful, the key of
reference is undefined.

VI-31

Indexed I-O - USE

4.7 THE USE STATEMENT

4.7.1 Function

The USE statement specifies procedures for input-output error handling
that are in addition to the standard procedures provided by the input-output
control system.

4.7.2 General Format

I file-name- 1 [, file-name-2] ..

USE AFTER STANDARD (l^^^P^^l PROCEDURE ON J -^^^

J 1 OUTPUT

ERROR

1-0

4.7.3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed
by a space. The remainder of the section must consists of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures .

(3) The same file-name can appear in a different specific arrangement of
the format. Appearance of a file-name in a USE statement must not cause the
simultaneous request for execution of more than one USE procedure.

(4) The words ERROR and EXCEPTION are synonymous and may be used inter-
changeably .

(5) The files implicitly or explicitly referenced in a USE statement need
not all have the same organization or access.

4.7.4 General Rules

(1) The designated procedures are executed by the input-output system
after completing the standard input-output error routine, or upon recognition
of the INVALID KEY or AT END conditions, when the INVALID KEY phrase or AT

END phrase, respectively, has not been specified in the input-output statement.

(2) After execution of a USE procedure, control is returned to the
invoking routine.

(3) Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion there

must be no reference to procedure-names that appear in the declarative portion,

except that PERFORM statements may refer to a USE statement or to the proce-
dures associated with such a USE statement.

(4) Within a USE procedure, there must not be the execution of any statement
that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.

VI-32

Indexed I-O - WRITE

4.8 THE WRITE STATEMENT

4.8.1 Function

The WRITE statement releases a logical record for an output or input-output
file.

4.8.2 General Format

WRITE record-name [FROM identifier] [; INVALID KEY imperative-statement]

4.8.3 Syntax Rules

(1) Record-name and identifier must not reference the same storage area.

(2) The record-name i^ the name of a logical record in the File Section
of the Data Division and may be qualified.

(3) The INVALID KEY phrase must be specified if an applicable USE proce-
dure is not specified for the associated file.

4.8.4 General Rules

(1) The associated file must be open in the OUTPUT or 1-0 mode at the time
of the execution of this statement. (See page VI-21, The OPEN Statement.)

(2) The logical record released by the execution of the WRITE statement is
no longer available in the record area unless [the associated file is named

in a SAME RECORD AREA clause or the execution of the WRITE statement is unsuc-
cessful due to an INVALID KEY condition. | The logical record is also available
to the program as a record of other files referenced in the same SAME RECORD
AREA clause as the associated output file, as well as to the file associated
with record-name.

(3) The results of the execution of the WRITE statement with the FROM

phrase is equivalent to the execution of:

a. The statement:

MOVE identifier TO record-name

according to the rules specified for the MOVE statement, followed by:

b. The same WRITE statement without the FROM phrase.

The contents of the record area prior to the execution of the implicit
MOVE statement have no effect on the execution of this WRITE statement.

After execution of the WRITE statement is complete, the information

in the area referenced by identifier is available, even though the information

in the area referenced by record-name may not be. (See general rule 2.)

(4) The current record pointer^ is unaffected by the execution of a WRITE
statement.

VI-33

Indexed I-O - WHITE

(5) The execution of the WRITE statement causes the value of the FILE

STATUS data item, if any, associated with the file to be updated. (See page

VI-2, 1-0 Status.) i
i

(6) The maximum record size for a file is established at the time the

file is created and must not subsequently be changed.

(7) The number of character positions on a mass storage device required
to store a logical record in a file may or may not be equal to the number of
character positions defined by the logical description of that record in the

program.

(8) The execution of the WRITE statement releases a logical record to the

operating system.

(9) Execution of the WRITE statement causes the contents of the record

area to be released. The '^MSCS utilizes the content of the record keys in
such a way that subsequent access of the record key may be made based upon any
of those specified record keys.

(10) The value of the prime record key must be unique within the records
in the file.

(11) The data item specified as the prime record key must be set by the
program to the desired value prior to the execution of the WRITE statement.
(See general rule 3.)

(12) If sequential access mode is specified for the file, records must be
released to the MSGS in ascending order of prime record key values.

(13) If random or dynamic access mode is specified, records may be released

to the MSGS in any program-specified order.

(14) When the ALTERNATE REGORD KEY clause is specified in the file control

entry for an indexed file, the value of the alternate record key may be

non-unique only if the DUPLICATES phrase is specified for that data item. In
this case the MSGS provides storage of records such that when records are
accessed sequentially, the order of retrieval of those records is the order

in which they are released to the MSGS.

(15) The INVALID KEY condition exists under the following circumstances:

a. l^Jhen sequential access mode is specified for a file opened in
the output mode, and the value of the prime record key is not greater than
the value of the prime record key of the previous record, or

b. Wlien the file is opened in the output or 1-0 mode, and the value
of the prime record key is equal to the value of a prime record key of a
record already existing in the file, or

c. Wlien the file is opened in the output or 1-0 mode, and the value
of an alternate record key for which duplicates are not allowed equals the
corresponding data item of a record already existing in the file, or

VI- 34

Indexed I-O - WRITE

d. When an attempt is made to write beyond the externally defined
boundaries of the file.

(16) When the INVALID KEY condition is recognized the excution of the WRITE
statement is unsuccessful, the contents of the record area are unaffected and

the FILE STATUS data item, if any, associated with file-name of the associated
file is set to a value indicating the cause of the condition. Execution of the

program proceeds according to the rules stated on page VI-4, The INVALID KEY
Condition. (See page VI-2, 1-0 Status.)

Sort-Merge - Introduation

1. INTRODUCTION TO THE SORT-MERGE MODULE

1.1 FUNCTION ;

The Sort-Merge module provides the capability to order one or more files of
records, or to combine two or more identically ordered files of records, accord

ing to a set of user-specified keys contained within each record. Optionally,
a user may apply some special processing to each of the individual records by
input or output procedures. This special processing may be applied before
and/or after the records are ordered by the SORT or after the records have
been combined by the MERGE,

1.2 LEVEL CHARACTERISTICS

Sort-Merge Level 1 provides the facility for sorting a single file only
once within a given execution of a COBOL program. Procedures for special
handling of each record in the file before and/or after it has been sorted are

also provided. '

Sort-Merge Level 2 provides the facility for sorting one or more files, or
combining two or more files, one or more times within a given execution of a

COBOL program.

1.3 RELATIONSHIP WITH SEQUENTIAL I-O MODULE

and MERGE Tae files specified in the USING and GIVING phrases of the SORT

statements must be described implicitly or explicitly in the FILE-CONTROL

paragraph as having sequential organization. No input-output statement may
be executed for the file named in the sort-merge file description.

VII-1

Sort-Merge - FILE -CONTROL

2. ENVIRONMENT DIVISION IN THE SORT-MERGE MODULE

2.1 INPUT-OUTPUT SECTION

2.1.1 The FILE-CONTROL Paragraph

2.1.1.1 Function

The FILE-CONTROL paragraph names each file and allows specification of
other file-related information.

2.1.1.2 General Format

FILE-CONTROL. {file-control-entry} ...

2.1.2 The File Control Entry.

2.1.2.1 Function

The file control entry names a sort

tion of the file to a storage medium.

or mer-ge file and specifies the associa-

2.1.2.2 General Format

SELECT file-name ASSIGN TO implementor-name-1 [, implementor-name-2] ...

2.1.2.3 Syntax Rules

(1) Each sort or merge file described in the Data Division must be named

once and only once as file-name in the FILE-CONTROL paragraph. Each sort |or |
merge file specified in the file control entry must have a sort-merge file
description entry in the Data Division.

(2) Since file-name represents a sort or merge file, only the ASSIGN

clause is permitted to follow file-name in the FILE-CONTROL paragraph.

2.1.2.4 General Rules

(1) The ASSIGN clause specifies the association of the sort

referenced by file-name to a storage medium.

or merge
file

VII-2

Sort-Merge - I-O-CONTROL

2.1.3 The I-O-CONTROL Paragraph

2.1.3.1 Function

The I-O-CONTROL paragraph specifies the memory area which is to be shared
by different files.

2.1.3.2 General Format

I-O-CONTROL.

RECORD

; SAME ■{ SORT
SORT-MERGE

^ AREA FOR file-name- 1 (, file-name-2] ...

2.1.3.3 Syntax Rules

(1) The I-O-CONTROL paragraph is optional.

(2) In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

(3) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not
represent sort or merge files may also be named in the clause.

(4) The three formats of the SAME clause (SAME RECORD AREA, SAME SORT

AREA, SAME SORT-MERGE AREA) are considered separately in the following:

More than one SAME clause may be included in a program, however:

a. A file-name must not appear in more than one SAME RECORD AREA
clause.

b. A file-name that represents a sort or merge file must not appear
in more than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

c. If a file-name that does not represent a sort or merge file appears
in a SAME AREA clause and one or more SAME SORT AREA or SAME SORT-MERGE AREA
clauses, all of the files named in that SAME AREA clause must be named in that

SAME SORT AREA or SAME SORT-MERGE AREA clause(s) . (See page IV-6, Sequential
I-O.)

(5)- The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or
SAME RECORD AREA clause need not all have the same organization or access.

2.1.3.4 General Rules

(1) The SAME RECORD AREA clause specifies that two or more files are to
use the same memory area for processing of the current logical record. All of
the files may be open at the same time. A logical record in the SAME RECORD

AREA is considered as a logical record of each opened output file whose file-
name appears in this SAME RECORD AREA clause and of the most recently read

input file whose file-name appears in this SAME RECORD AREA clause. This is

VII-3

Sort-Merge - I-O-CONTROL

equivalent to implicit redefinition of the area, i.e. , records are aligned on
the leftmost character position.

(2) If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used, at least
one of the file-names must represent a sort or merge file. Files that do not
represent sort or merge files may also be named in the clause. This clause
specifies that storage is shared as follows:

a. The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area which will be made available for use in sorting or merging each
sort or merge file named. Thus any memory area allocated for the sorting or
merging of a sort or merge file is available for reuse in sorting or merging
any of the other sort or merge files.

b. In addition, storage areas assigned to files that do not represent

sort or merge files may be allocated as needed for sorting or merging the sort

or merge files named in the SAME SORT AREA or SAME SORT-MERGE AREA clause.
The extent of such allocation will be specified by the implementor.

c. Files other than sort or merge files do not share the same storage
area with each other. If the user wishes these files to share the same stor-

age area with each other, he must also include in the program a SAME AREA or
SAME RECORD AREA clause naming these files.

d. During the execution of a SORT or MERGE statement that refers to

a sort or merge file named in this clause, any non sort-merge files named in
this clause must not be open.

VII-4

3. DATA DIVISION IN THE SORT-MERGE MODULE

3.1 FILE SECTION

An SD file description gives information about the size and the names of
the data records associated with the file to be sorted or merged. There are

no label procedures which the user can control, and the rules for blocking
and internal storage are peculiar to the SORT land MERGE [statements .

3.2 THE SORT-MERGE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

3.2.1 Function

The sort-merge file description furnishes information concerning the
physical structure, identification, and record names of the file to be sorted

tl or merged.

3.2.2 General Format

SD file-name

[; RECORD CONTAINS [integer- 1 TO] integer-2 CHARACTERS]

r^*m* (RECORD IS\-^ ifj^ n^

jigc^S are] data-name-1 [
, data-name- 2 J ...

; 3.2.3 Syntax Rules'

(1) The level indicator SD identifies the beginning of the sort-merge

file description and must precede the file-name.

(2) The clauses which follow the name of the file are optional and their
order of appearance is immaterial.

(3) One or more record description entries must follow the sort-merge

file description entry, however, no input-output statements may be executed
for this file.

VII-5

Sort-Merge - BATA RECORDS

3.3 THE DATA RECORDS CLAUSE

3.3.1 Function ■

The DATA RECORDS clause serves only as documentation for the names of data

records with their associated file.

3.3.2 General Format

|l§^s^iRE] data-name- 1 *[, data-name-2] ...

3.3.3 Syntax Rules

(1) Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number recor4 descriptions, with the same names, associated
with them.

3.3.4 General Rules

(1) The presence of more than one data-name indicates that the, file
contains more than one type of data record. These records may be of differ-

ing sizes, different formats, etc. The order in which they are listed is not

significant.

(2) Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of data
record within the file.

VII-6

t>ort~Merge - RECORD CONTAINS

3.4 THE RECORD CONTAINS CLAUSE

3.4.1 Function

The RECORD CONTAINS clause specifies the size of data records.

3.4.2 General Format

RECORD CONTAINS [integer- 1 TO] integer-2 CHARACTERS

3.4.3 General Rules

(1) The size of each data record is completely defined within the record

description entry, therefore this clause is never required. When present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact

number of characters in the data record. If integer-1 and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data
record, respectively.

b. The size is specified in terms of the number of character positions

required to store the logical record, regardless of the types of characters
used to represent the items within the logical record. The size of a record

is determined by the sum of the number of characters in all fixed length ele-
mentary items plus the sum of the maximum number of characters in any variable

length item subordinate to the record. This sum may be different from the

actual size of the record; see page 1-85, Selection of Character Representation

and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35, The USAGE
Clause.

VII-7

Sort-Merge - MERGE

4. PROCEDURE DIVISION IN THE SORT-MERGE MODULE

4.1 THE MERGE STATEMENT

4.1.1 Function

The MERGE statement combines two or more identically sequenced files on a

set of specified keys, and during the process makes records available, in
merge order, to an output procedure or to an output file.

4.1.2 General Format

MERGE file-name- 1 ON |deSCENDINg] ̂EY data-name- 1 [, data-name-2] ...

I KEY data-name-3 [, data-name-A^ •••] •••

r ASCENDING
^ DESCENDING

[collating SEQUENCE IS alphabet-name]

USING file-name-2, flle-name-3 [, file-name-4] ...

OUTPUT PROCEDURE IS section-name- 1

GIVING file-name-5

Y THROUGH

I THRU J
section-name-2

4.1.3 Syntax Rules

(1) File-name-1 must be described in a sort-merge file description entry
in the Data Division.

(2) Section-name-1 represents the name of an output procedure.

(3) File-name-2, file-name-3, file-name-4, and file-name-5 must be ■

described in a file description entry, not in a sort-merge file description
entry, in the Data Division. The actual size of the logical record (s)

described for file-name-2, file-name-3, file-name-4, and file-name-5 must be

equal to the actual size of the logical record(s) described for file-narae-1.
If the data descriptions of the elementary items that make up these records

are not identical, it is the programmer's responsibility to describe the
corresponding records in such a manner so as to cause an equal number of
character positions to be allocated for the corresponding records.

(4) The words THRU and THROUGH are equivalent.

(5) Data-name- 1, data-name-2, data-name-3, and data-narae-4 are KEY data-
names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-1.

b. KEY data-names may be qualified.

VII-8

Sort-Merge - MERGE

c. The data items identified by KEY data-names must not be variable
length items.

d. If file-name- 1 has more than one record description, then the data

items identified by KEY data-names need be described in only one of the record
descriptions .

e. None of the data items identified by KEY data-names can be
described by an entry which either contains an OCCURS clause or is subordinate
to an entry which contains an OCCURS clause.

(6) No more than one file-name from a multiple file reel can appear in the
MERGE statement.

(7) File-names must not be repeated within the MERGE statement.

(8) MERGE statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure associated with a
SORT or MERGE statement.

4.1.4 General Rules

(1) The MERGE statement will merge all records contained on fxle-name-2,

file-name-3, and file-name-4. The files referenced in the MERGE statement
must not be open at the time the MERGE statement is executed. These files

are automatically opened and closed by the merge operation with all implicit
functions performed, such as the execution of any associated USE procedures.

The terminating function for all files is performed as if a CLOSE statement,
without optional phrases, had been executed for each file.

(2) The data-names following the word KEY are listed from left to right in
the MERGE statement in order of decreasing significance without regard to how

they are divided into KEY phrases. In the format, data-name- 1 is the major
key, data-name-2 is the next most signficant key, etc.

a. When the ASCENDING phrase is specified, the merged sequence will
be from the lowest value of the contents of the data items identified by the

KEY data-names to the highest value, according to the rules for comparison
of operands in a relation condition.

b. When the DESCENDING phrase is specified, the merged sequence will
be from the highest value of the contents of the data items identified by the

KEY data-names to the lowest value, according to the rules for comparison of
operands in a relation condition.

(3) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in that MERGE statement.

b. Second, the collating sequence established as the program

collating sequence.

VII-9

Sort-Merge - MERGE

(A) The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form a part of any other procedure.
In order to make merged records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control must not

be passed to the output procedure except when a related SORT or MERGE state-
ment is being executed. The output procedure may consist of any procedures

needed to select, modify, or copy the records that are being returned one at

a time in merged order, from file-name- 1. The restrictions on the procedural
statements within the output procedure are as follows:

a. The output procedure must not contain any transfers of control to
points outside the output procedure; ALTER, GO TO and PERFORM statements in

the output procedure are not permitted to refer to procedure-names outside the
output procedure. COBOL statements are allowed that will cause an implied
transfer of control to declaratives.

b. The output procedures must not contain any SORT or MERGE state-
ments. I

c. The remainder of the Procedure Division must not contain any trans-
fers of control to points inside the output procedures; ALTER, GO TO, and

PERFORM statements in the remainder of the Procedure Division are not permitted

to refer to procedure-names within the output procedures.

(5) If an output procedure is specified, control passes to it during
execution of the MERGE statement. The compiler inserts a return mechanism

at the end of the last section in the output procedure. When control passes
the last statement in the output procedure, the return mechanism provides for
termination of the merge, and then passes control to the next executable

statement after the MERGE statement. Before entering the output procedure,
the merge procedure reaches a point at which it can select the next record
in merged order when requested. The RETURN statements in the output procedure
are the requests for the next record.

(6) Segmentation, as defined in Section IX, can be applied to programs
containing the MERGE statement. However, the following restrictions apply:

a. If the MERGE statement appears in a section that is not in an

independent segment, then any output procedure referenced by that MERGE
statement must appear:

1) Totally within non-independent segments, or

2) Wholly contained in a single independent segment.

b. If a MERGE statement appears in an independent segment, then any
output procedure referenced by that MERGE statement must be contained:

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that MERGE
statement .

VII-IO

Sort-Merge - MERGE

(7) If the GIVING phrase is specified, all the merged records in

file-name-l are automatically written on file-name-5 as the implied output
procedure for this MERGE statement.

(8) In the case of an equal compare, according to the rules for comparison

of operands in a relation condition, on the contents of the data items identi-
fied by all the KEY data-names between records from two or more input files

(f ile-name-2 , file-name-3, file-name-4, . . .) , the records are written on file-
name-5 or returned to the output procedure, depending on the phrase specified,
in the order that the associated input files are specified in the MERGE
statement.

(9) The results of the merge operation are predictable only when the

records in the files referenced by file-name-2, file-name-3, are ordered
as described in the ASCENDING or DESCENDING KEY clause associated with the
MERGE statement.

VII-11

Sort-Merge - RELEASE

4.2 THE RELEASE STATEMENT

4.2.1 Function '

The RELEASE statement transfers records to the initial phase of a SORT
operation.

4.2.2 General Format

RELEASE record-name [FROM identifier]

4.2.3 Syntax Rules

(1) A RELEASE statement may only be used within the range of an input

procedure associated with a SORT statement for a file whose sort-merge file

description entry contain^ record-name. (See page VII-14, The SORT State-
ment .)

(2) Record-name must be the name of a logical record in the associated
sort-merge file description entry and may be qualified.

(3) Record-name and identifier must not refer to the same storage area.

4.2.4 General Rules

(1) The execution of a RELEASE statement causes the record named by

record-name to be released to the initial phase of a sort operation.

(2) If the FROM phrase is used, the contents of the identifier data area

are moved to record-name, then the contents of record-name are released to
the sort file. Moving takes place according to the rules specified for the
MOVE statement without the CORRESPONDING phrase. The information in the

record area is no longer available, but the information in the data area
associated with identifier is available.

(3) After the execution of the RELEASE statement, the logical record is

no longer available in the record area unless the associated sort-merge file
is named in a SAME RECORD AREA clause. The logical record is also available

to the program as a record of other files referenced in the same SAME RECORD

AREA clause as the associated sort-merge file, as well as to the file
associated with record-name. When control passes from the input procedure,
the file consists of all those records which were placed in it by the
execution of RELEASE statements.

VII-12

Sort-Merge - RETURN

4.3 THE RETURN STATEMENT

4.3.1 Function

The RETURN statement obtalns| either} sorted records from the final phase of
a SORT operation or merged records during a MERGE operation.

4.3.2 General Format

RETURN file-name RECORD [iNTO identifier] ; AT END imperative-statement

4.3.3 Syntax Rules

(1) File-name must be described by a sort-merge file description entry in
the Data Division.

(2) A RETURN statement may only be used within the range of an output

procedure associated with a SORT "or MERGe] statement for file-name.

(3) The INTO phrase must not be used when the input file contains logical
records of various sizes as indicated by their record descriptions. The
storage area associated with identifier and the record area associated with

file-name must not be the same storage area.

4.3.4 General Rules

(1) When the logical records of a file are described with more than one
record description, these records automatically share the same storage area;
this is equivalent to an implicit redefinition of the area. The contents of

any data items which lie beyond the range of the current data record are
undefined at the completion of the execution of the RETURN statement.

(2) The execution of the RETURN statement causes the next record, in the

order specified by the keys listed in the SORTIor MERGE I statement > to be made
available for processing in the record areas associated with the sortjor merge
file.

(3) If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules for the
MOVE statement without the CORRESPONDING phrase. The implied MOVE does not

occur if there is an AT END condition. Any subscripting or indexing associated
with identifier is evaluated after the record has been returned and immediately
before- it is moved to the data item.

(4) When the INTO phrase is used, the data is available in both the input
record area and the data area associated with identifier.

(5) If no next logical record exists for the file at the time of the execu-
tion of a RETURN statement, the AT END condition occurs. The contents of the

record areas associated with the file when the AT END condition occurs are

undefined. After the execution of the imperative-statement in the AT END
phrase, no RETURN statement may be executed as part of the current output

procedure.

Sort-Merge - SORT

4.4 THE SORT STATEMENT

4.4.1 Function

The SORT statement creates a sort file by executing input procedures or by
transferring records from another file, sorts the records in the sort file on
a set of specified keys, and in the final phase of the sort operation, makes
available each record from the sort file, in sorted order, to some output
procedures or to an output file.

4.4.2 General Format

c^-orp 1 n^T (ASCENDING SORT file-name- 1 ON { DESCENDING
] KEY data-name- 1 [, data-name-2]

KEY data-name-3 f, data-name-4]

ON f ASCEN
DING '

DESCENDING

COLLATING SEQUENCE IS alphabet-name]

INPUT PROCEDURE IS section-name- 1 f THROUGH 1

\ THRU
■

section-name-2

USING file-name-2

f, file-
name-3

OUTPUT PROCEDURE IS section-name-3

1 GIVING file-name-4 I THROUGH'

THRU sec tion-name-4

4.4.3 Syntax Rules

(1) File-name-l must be described in a sort-merge file description entry
in the Data Division.

(2) Section-name- 1 represents the name of an input procedure.
name-3 represents the name of an output procedure. Section-

(3) File-name-2 , I f ile-name-3 | and file-name-4 must be described in a file

description entry, not in a sort-merge file description entry, in the Data

Division. The actual size of the logical record (s) described for file-name-2,
f ile-name-3 land file-name-4 must be equal to the actual size of the logical
record(s) described for file-name-l. If the data descriptions of the elemen-

tary items that make up these records are not identical, it is the programmer's
responsibility to describe the corresponding records in such a manner so as to

cause equal amounts of character positions to be allocated for the correspond-
ing records.

(4) Data-name-1, data-name-2, data-name-3, and data-name-4 are KEY data-
names and are subject to the following rules:

a. The data items identified by KEY data-names must be described in
records associated with file-name-l.

VII-14

Sort-Merge - SORT

b. KEY data-names may be qualified.

c. The data items identified by KEY data-names must not be variable
length items.

d. If file-name- 1 has more than one record description, then the data
items identified by KEY data-names need be described in only one of the record
descriptions .

e. None of the data items identified by KEY data-names can be
described by an entry which either contains an OCCURS clause or is subordinate
to an entry which contains an OCCURS clause.

(5) The words THRU and THROUGH are equivalent.

(6) SORT statements may appear anywhere except in the declaratives portion
of the Procedure Division or in an input or output procedure associated with a

SORT [or MERGE J s tat ement . !

(7) No more than one file-name from a multiple file reel can appear in
the SORT statement.

4.4.4 General Rules

(1) In Level 1, the Procedure Division of a program contains one SORT

statement and a STOP RUN statement in the first non-declarative portion.
Other sections consists of only the input and output procedures associated
with the SORT statement.

(2) In Level 2, the Procedure Division may contain loore than one SORT

statement appearing anjwhere except:

a. in the declaratives portion, or

b. in the input and output procedures associatesd with a SORT or
MERGE statement.

(3) The data-names following the word KEY are listed from left to right in
the SORT statement in order of decreasing significance without regard to how

they are divided into KEY phrases. In the format, data— name-1 is the major
key, data-name-2 is the next most significant key, etc.

a. When the ASCENDING phrase is specified, the sorted sequence will
be from the highest value of the contents of the data items identified by the

KEY data-names to the lowest value, according to the rules for comparison of
operands in a relation condition.

(4) The collating sequence that applies to the comparison of the nonnumeric
key data items specified is determined in the following order of precedence:

a. First, the collating sequence established by the COLLATING
SEQUENCE phrase, if specified, in the SORT statement.

b. Second, the collating sequence established as the program
collating sequence.

VII-15

Sort-Merge - SORT

(5) The input procedure must consist of one or more sections that appear

contiguously in a source program and do not form a part of any output proce-
dure. In order to transfer records to the file referenced by file-name- 1, the

input procedure must include the execution of at least one RELEASE statement.

Control must not be passed to the input procedure except when a related SORT v

statement is being executed. The input procedure can include any procedures

needed to select, create, or modify records. The restrictions on the proce-
dural statements within the input procedure are as follows:

a. The input procedure must not contain any SORT or MERGE statements

b. The input procedure must not contain any explicit transfers of
control to points outside the input procedure; ALTER, GO TO, and PERFORM

statements in the input procedure are not permitted to refer to procedure-
names outside the input procedure. COBOL statements are allowed that will
cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any
transfers of control to points inside the input procedure; ALTER, GO TO and
PERFORM statements in the remainder of the Procedure Division must not refer

to procedure-names within the input procedure.

(6) If an input procedure is specified, control is passed to the input

procedure before file-name-1 is sequenced by the SORT statement. The compiler
inserts a return mechanism at the end of the last section in the input proce-

dure and when control passes the last statement in the input procedure, the

records that have been released to file-name-1 are sorted.

(7) The output procedure must consist of one or more sections that appear
contiguously in a source program and do not form part of any input procedure.

In order to make sorted records available for processing, the output procedure
must include the execution of at least one RETURN statement. Control musu not

be passed to the output procedure except when a related SORT statement is being
executed. The output procedure may consist of any procedures needed to select,

modify or, copy the records that are being returned, one at a time in sorted

order, from the sort file. The restrictions on the procedural statements with-
in the output procedure are as follows:

a. The output procedure must not contain any SORT or MERGE statements.

b. The output procedure must not contain any explicit transfers of
control to points outside the output procedure; ALTER, GO TO, and PERFORM

statements in the output procedure are not permitted to refer to procedure-
names outside the output procedure. COBOL statements are allowed that will
cause an implied transfer of control to declaratives.

c. The remainder of the Procedure Division must not contain any trans-
fers of control to points inside the output procedure; ALTER, GO TO and PERFORM

statements in the remainder of the Procedure Division are not permitted to

refer to procedure-names within the output procedure.

(8) If an output procedure is specified, control passes to it after file-
name-1 has been sequenced by the SORT statement. The compiler inserts a return
mechanism at the end of the last section in the output procedure and when
control passes the last statement in the output procedure, the return mechanism

VII-16

Sort-Merge - SORT

provides for termination of the sort and then passes control to the next
executable statement after the SORT statement. Before entering the output

procedure, the sort procedure reaches a point at which it can select the
next record in sorted order when requested. The RETURN statements in the

output procedure are the requests for the next record.

(9) Segmentation as defined in Section IX can be applied to programs

containing the SORT statement. However, the following restrictions apply:

a. If a SORT statement appears in a section that is not in an inde-
pendent segment, then any input procedures or output procedures referenced

by that SORT statement must appear:

1) Totally within non-independent segments, or

2) Wliolly contained in a single independent segment.

b. If a SORT statement appears in an independent segment, then any

input procedures or output procedures referenced by that SORT statement. must
be contained;

1) Totally within non-independent segments, or

2) Wholly within the same independent segment as that SORT
statement.

(10) If the USING phrase is specified, all the records in f lle-name-2 j and

f ile-name-3| are transferred automatically to fA le-name- 1 . At the time of

execution of the SORT statement, f ile-name-2[~an(l f ile-nav r -"Tj must not be open.
The SORT statement automatically initiates the processing- cj£ , makes available

the logical records for, and terminates the processing or f ile-name-2 [and file-
name-3T| These implicit functions are performed such that any associated USE
procedures are executed. The terminating function for all files is performed
as if a CLOSE statement, without optional phrases, had been executed for each
file. The SORT statement also automatically performs the. implicit functions

of moving the records from the file area of f ile-name-2 jruid f ile-name-3] to tlie
file area for file-name-1 and the release of records to the initial phase of
the sort operation.

(11) If the GIVING phrase is specified, all the sorted records in file-
name-1 are automatically written on file-name-A as the Implied output procedure
for this SORT statement. At the time of execution of the SORT statement file-

name-4 must not be open. The SORT statement automatically initiates the
processing of, releases the logical records to, and terminates the processing

of file-name-4. These implicit functions are performed such that any asso-
ciated USE procedures are executed. The terminating function is performed as

if a CLOSE statement, without optional phrases, had been executed for the file.
The SORT statement also automatically performs the implicit functions of the
return of the sorted records from the final phase of the sort operation and

the moving of the records from the file area for file-naine-1 to the file area
for file-name-4.

VII-17

Report Writer - Introduction

1. INTRODUCTION TO THE REPORT WRITER MODULE

1.1 FUNCTION

The Report Writer module provides the facility for producing reports by

specifying the physical appearance of a report rather than requiring specifi-
cation of the detailed procedures necessary to produce that report.

A hierarchy of levels is used in defining the logical organization of a

report. Each report is divided into report groups, which in turn are divided
into sequences of items. Such a hierarchical structure permits explicit
reference to a report group with implicit reference to other levels in the
hierarchy. A report group contains one or more items to be presented on one
or more lines .

1.2 LANGUAGE CONCEPTS

1.2.1 LINE-COUNTER

The reserved word LINE-COUNTER is a name for a special register that is
generated for each report description entry in the Report Section of the Data
Division. The implicit description is that of an unsigned intege:^ that must

be capable of representing a range of values from 0 through 999999. The usage

is defined by the iraplementor. The value in LINE-COUNTER is maintained by
the Report Writer Control System, and is used to determine the vertical

positioning of a report. The value in LINE-COUNTER may be accessed by
Procedure Division statements; however, only the RWCS may change the value of
LINE-COUNTER.

1.2.2 PAGE-COUNTER

The reserved word PAGE-COUNTER is a name for a special register that is
generated for each report description entry in the Report Section of the Data
Division. The implicit description is that of an unsigned integer that must

be capable of representing a range of values from 1 through 999999. The usage

is defined by the im.plementor . The value in PAGE-COUNTER is maintained by the
Report Writer Control System and is used by the program to number the pages of

a report. The value in PAGE-COUNTER may be altered by Procedure Division
statements.

1.2.3 SUBSCRIPTING

In the Report Section, neither a sum counter nor the special registers

LINE-COUNTER and PAGE-COUNTER can be used as a subscript.

1.3 RELATIONSHIP WITH SEQUENTIAL I-O MODULE

A report file is a sequential file as described in the Sequential 1-0 module
and is subject to the restrictions in the following paragraph.

An OPEN statement, specifying either the OUTPUT or EXTEND phrase, must have
been executed prior to the execution of the INITIATE statement, and a CLOSE,
without the REEL or UNIT phrase, must be executed for this file subsequent to

the execution of the TERMINATE statement. No other input-output statement may
be executed for this file.

VIII-1

2. DATA DIVISION IN THE REPORT WRITER MODULE

2.1 FILE SECTION

A REPORT clause is required in the FD entry to list the names of the

reports to be produced. ^

2.2 REPORT SECTION

In the Report Section the description of each report must begin with a

report description entry (RD entry) and be followed by the entries that
describe the report groups within the report.

2.2.1 Report Description Entry

In addition to naming the report, the RD entry defines the format of each

page of the report by specifying the vertical boundaries of the region within
which each type of report group may be printed. The RD entry also specifies
the control data items. When the report is produced, changes in the values
of the control data items cause the detail information of the report to be
processed in groups called control groups.

Each report named in the REPORTS clause of an RD entry in the File Section
must be the subject of an RD entry in the Report Section. Furthermore each

report in the Report Section must be named in one and only one FD entry.

2.2.2 Report Group Description Entry

The report groups that will comprise the report are described following the

RD entry. The description of each report group begins with a report group

description entry; that is an entry that has a 01 level-number and a TYPE
clause. Subordinate to the report group description entry, there may appear

group and elementary entries that further describe the characteristics of the
report group.

VIII-2

Report Writer - File Description

2.3 THE FILE DESCRIPTION - COMPLETE ENTRY SKELETON

2.3.1 Function

The file description furnishes information concerning the physical struc-
ture, identification and report names pertaining to a given report file.

2.3.2 General Format

FD file-name

; BLOCK CONTAINS [integer-1 TO] integer-2 {cScTERs]

1^; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

(RECORD IS X f STANDARD I

; LABEL I^Egoi^Ds] OMITTED j

VALUE OF implementor-name-1 IS

. T ̂ o Tc fdata-name-Z) , implementor-name-2 IS iiiteral-2 1

[; CODE-SET IS alphabet-name

i REPORT IS ̂ r 1

IpORTSARe] ̂ eP°rt-name-l [, report-name-2 J ...

f data-name- 1

\literal-l

2.3.3 Syntax Rules

(1) The level indicator FD identifies the beginning of a file description

and must precede the file-name.

(2) The clauses which follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

(3) The file referenced by file-name must be defined, implicitly or
explicitly in the FILE-CONTROL paragraph of the Environment Division, as a
sequential file. Further, each report named in the REPORT clause must be
the subject of a report description entry in the Report Section.

(4) No record description entries are permitted for file-name and no
input-output statements, except the OPEN with either the OUTPUT or EXTEND
phrase and the CLOSE without either the REEL or UNIT phrase, may be executed
for this file.

VIII-3

Report Writer - Report Description

2.4 THE REPORT DESCRIPTION - COMPLETE ENTRY SKELETON

2.4.1 Function

The report description entry names a report, specifies any identifying
characters to be appended to each print line, and describes the physical
structure and organization of that report.

2.4.2 General Format

RD report-name

[; CODE literal-1]

("CONTROL IS 1 /data-name-1 [, data-name-2] ...
' (CONTROLS are) j FINAL [, data-name-1 [, data-name-2] ...]

; PAGE
LIMIT IS

LIMITS ARE integer-1
LINE
LINES f, HEADING integer-2]

[, FIRST DETAIL integer-3] [, LAST DETAIL integer-4]

[, FOOTING integer-5] .

2.4.3 Syntax Rules

(1) The report-name must appear in one and only one REPORT clause.

(2) The order of appearance of the clauses following the report-name
is immaterial.

(3) Report-name is the highest permissible qualifier that may be specified
for LINE-COUNTER, PAGE-COUNTER and all data-names defined within the Report
Section.

(4) One or more report group description entries must follow the report
description entry.

2.4.4 PAGE-COUNTER Rules

(1) PAGE-COUNTER i§ the reserved word to reference a special register
that is automatically created for each report specified in the Report Section.

(See page VIII-1, P AGE- COUNTER.)

(2) In the Report Section, a reference to PAGE-COUNTER can only appear in
a SOURCE clause. Outside of the Report Section, PAGE-COUNTER may be used in
any context in which a data-name of integral value can appear.

(3) If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER must
be qualified by a report-name whenever it is referenced in the Procedure
Division.

VIII-4

Report Writer - Report Description

In the Report Section an unqualified reference to PAGE-COUNTER is
implicitly qualified by the name of the report in which the reference is made.

Whenever the PAGE- COUNTER of a different report is referenced, PAGE-COUNTER

must be explicitly qualified by that report-name. (See page II-l, Name
Characteristics, for constraints that apply when Report Writer is associated
with Nucleus, Level 1.)

(4) Execution of the INITIATE statement causes the Report Writer Control

System to set the PAGE-COUNTER of the referenced report to one (1).

(5) PAGE-COUNTER is automatically incremented by one (1) each time the
Report Writer Control System executes a page advance.

(6) PAGE-COUNTER may be altered by Procedure Division statements.

2.4.5 LINE-COUNTER Rules,
I

(1) LINE-COUNTER is the reserved word used to reference a special register
that is automatically created for each report specified in the Report Section.

(See page VIII-1, LINE-COUNTER.)

(2) In the Report Section a reference to LINE-COUNTER can only appear in
a SOURCE clause. Outside the Report Section, LINE-COUNTER may be used in

any context in which a data-name of integral value may appear. However, only
the Report Writer Control System can change the contents of LINE-COUNTER.

(3) If more than one LINE-COUNTER exists in a program, LINE-COUNTER must
be qualified by a report-name whenever it is referenced in the Procedure
Division.

In the Report Section an unqualified reference to LINE-COUNTER is
implicitly qualified by the name of the report in which the reference is made.

Whenever the LINE-COUNTER of a different report is referenced, LINE-COUNTER

must be explicitly qualified by that report-name. (See page II-l, Name
Characteristics, for constraints that apply when Report Writer is associated
with Nucleus, Level 1.)

(4) Execution of an INITIATE statement causes the Report Writer Control

System to set the LINE-COUNTER of the referenced report to zero (0) . The

Report Writer Control System also automatically resets LINE-COUNTER to zero
each time it executes a page advance.

(5) The value of LINE-COUNTER is not affected by the processing of

non-printable report groups nor by the processing of a printable report group
whose printing is suppressed by means of the SUPPRESS statement.

(6) At the time each print line is presented, the value of LINE-COUNTER
represents the line number on which the print line is presented. The value of

LINE-COUNTER after the presentation of a report group is governed by the
presentation rules for the report group. (See paragraph 2.5.5, Presentation

Rules Tables, beginning on page VIII-9.)

VIII-5

Eeport Writer - Report Group Description

2.5 THE REPORT GROUP DESCRIPTION - COMPLETE SKELETON

2.5.1 Function

The report group description entry specifies the characteristics of a
report group and of the individual items within a report group.

2.5.2 General Format

Format 1

01 f data-name-l]

LINE NUMBER IS fes-'^-l ON NEXT
 PAGE]) [PLUS integer-2 J

finteger-S
NEXT GROUP IS VpLUS integer-4j

NEXT PAGE

TYPE IS <)~

r (REPORT HEADING]
{rh J
[PAGE HEADING]
(PH j

[CONTROL HEADING^ j d a t a-name- 2
; IcH J (FINAL

\ [DETAIL')
(DE j

/ CONTROL FOOTING'

ICF
[PAGE FOOTING]
(PF J

r REPORT FOOTING j

j data-name-3 , 1 FINAL \

[; [USAGE is] DISPLAY J .

Format 2

level-number [data-name-l]

; LINE NUMBER IS ll^'t^"-'
 NEXT PAgll I PLUS integer-2

[; [USAGE is] DISPLAY] .

VIII-6

Report Writer - Report Group Description

Format 3

level-number [data-name- 1]

[; BLANK WHEN ZERO]

[; GROUP indicate]

C JUSTIFIED^ RIGHT
' I JUST j

; LINE NUMBER

[; COLUMN NUMBER IS integer-s]

f PICTURE', , IS character-string

finteger-l [ON NEXT PAGE]' I PLUS integer-2 J

' (lie

r ; SOURCE IS identifier-1

VALUE IS literal

|; SUM identifier-2 [, identif ier-3] ...

[^UPON data-name-2 [, data-name-3]

(data-name-4 RESET ON

I FINAL

[; [USAGE is] DISPLAY] .]]..
.

2. 5. 3 Syntax Rules

(1) The report group description entry can appear only in the Report
Section.

(2) Except for the data-name clause, which when present must immediately
follow the level-number, the clauses may be written in amy sequence.

(3) In Format 2 the level-number may be any integer from 02 to 48

inclusive. In Format 3' the level-number may be any integer from 02 to 49 inclusive.

(4) The description of a report group may consist of one, two or three
hierarchic levels :

a. The first entry that describes a report grouip must be a Format 1
entry.

b. Both Format 2 and Format 3 entries may be iimmediately subordinate
to a Format 1 entry.

VIII-7

Reyort Winter - Report Group Descript'lon

c. At least one Format 3 entry must be immediately subordinate to a
Format 2 entry.

d. Format 3 entries must be elementary.

(5) In a Format 1 entry, data-name- 1 is required only when:

a. A DETAIL report group is referenced by a GENERATE statement,

b. A DETAIL report group is referenced by the UPON phrase of a
SUM clause,

c. A report group is referenced in a USE BEFORE REPORTING sentence,

d. The name of a CONTROL FOOTING report group is used to qualify a
reference to a sum counter.

(6) A Format 2 entry must contain at least one optional clause.

(7) In a Format 2 entry, data-name- 1 is optional. If present it may be
used only to qualify a sum counter reference.

(8) In the Report Section, the USAGE clause is used only to declare the
usage of printable items.

a. If the USAGE clause appears in a Format 3 entry, that entry must
define a printable item.

b. If the USAGE clause appears in a Format 1 or Format 2 entry, at
least one subordinate entry must define a printable item.

(9) An entry that contains a LINE NUMBER clause must not have a subordi-
nate entry that also contains a LINE NUMBER clause.

(10) In Format 3:

a. -A GROUP INDICATE clause may appear only in a TYPE DETAIL report
group .

b. A SUM clause may appear only in a TYPE CONT'ROL FOOTING report group.

c. An entry that contains a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry that contains a LINE NUMBER clause.

d. Data-name- 1 is optional but may be specified in any entry. Data-

name-1, however, may be referenced only if the entry defines a sum counter.

e. A LINE NUMBER clause must not be the only clause specified.

f. An entry that contains a VALUE clause must also have a COLUMN
NUMBER clause.

(11) The following table shows all permissible clause combinations for a
Format 3 entry. The table is read from left to right along the selected row.

VIII-8

Report Writer - Report Group Description

An 'M' indicates that the presence of the clause is mandatory.

A 'P' indicates that the presence of the clause is permitted, but
not required.

A blank indicates that the clause is not permitted.

CLAUSES

PIC COLUMN SOURCE SUM VALUE
JUST

BLANK

raEN ZERO

GROUP

INDICATE USAGE
LINE

M M P

M M M P P P

M P M P P P P

M P M P P P P

M M M P P P P

Permissible Clause Combinations in Format 3 Entries

2.5.4 General Rules

(1) Format 1 is the report group entry. The report group is defined by
the contents of this entry and all of its subordinate entries.

2.5.5 Presentation Rules Tables

2.5.5.1 Description

The tables and rules on the following pages specify:

(1) The permissible combinations of LINE NUMBER and NEXT GROUP clauses

for each type of report group,

(2) The requirements that are placed on the use of these clauses, and

(3) The interpretation that the RWCS gives to these clauses.

2. 5. 5.2 Organization

There is an individual presentation rules table for each of the following
types of report groups: REPORT HEADING, PAGE HEADING, PAGE FOOTING, REPORT

FOOTING. In addition, DETAIL report groups, CONTROL HEADING report groups,
and CONTROL FOOTING report groups are treated jointly in the Body Group

Presentation Rules Table. (See paragraph 2.5.5.8, The Body Group Presentation

Rules Table, beginning on page VIII-15.)

Columns 1 and 2 of a presentation rules table list all of the permissible
combinations of LINE NUMBER and NEXT GROUP clauses for the designated report

group TYPE. Consequently, for the purpose of identifying the set of presen-

VIII-9

Report Writer - Report Group Description

tation rules that apply to a particular combination of LINE NUMBER and NEXT

GROUP clauses, a presentation rules table is read from left to right, along
the selected row. ^

The applicable rules columns of a presentation rules table are partitioned

into two parts. The first part specifies the rules that apply if the report
description contains a PAGE clause, and the second part specifies the rules
that apply if the PAGE clause is omitted. The purpose of the rules named in
the applicable rules columns is discussed below:

(1) Upper Limit Rules and Lower Limit Rules. These rules specify the
vertical subdivisions of the page within which the specified report group
may be presented.

In the absence of a PAGE clause the printed report is not considered

to be partitioned into vertical subdivisions. Consequently, within the tables

no upper limit rule and lower limit rule is specified for a report description
in which the PAGE clause is omitted.

(2) Fit Test Rules. The fit test rules are applicable only to body groups,
and hence fit test rules are specified only within the Body Group Presentation

Rules Table. At object time the RWCS applies the fit test rules to- determine
whether the designated body group can be presented on the page to whicli the
report is currently positioned.

However, even for body groups there are no fit test rules when the
PAGE clause is omitted from the report description entry.

(3) First Print Line Position Rules. The first print line position rules
specify where on the report medium the RWCS shall present the first print line
of the given report group.

The presentation rule tables do not specify where on the report medium

the RWCS shall present the second and subsequent print lines (if any) of a
report group. Certain general rules determine where the second and subsequent

print lines of a report group shall be presented. Refer to the LINE NUMBER

clause general rules for this information. (See page VIII-33, The LINE NUMBER
Clause.)

(4) Next Group Rules. The next group rules relate to the proper use of
the NEXT GROUP clause.

(5) Final LINE-COUNTER Setting Rules. The terminal values that the RWCS
places in LINE-COUNTER after presenting report groups are specified by the
final LINE-COUNTER setting rules.

2.5.5.3 LINE NUMBER Clause Notation

Column 1 of the presentation rules table uses a shorthand notation to

describe the sequence of LINE NUMBER clauses that may appear in the descrip-
tion of a report group. The meaning of the abbreviations used in column 1

is as follows :

Report Writer - Report Group Description

(1) The letter 'A' represents one or more absolute LINE NUMBER clauses,
none of which have the NEXT PAGE phrase, that appear in consecutive order

within the sequence of LINE NUMBER clauses in the report group description
entry .

(2) The letter 'R' represents one or more relative LINE NUMBER clauses
that appear in consecutive order within the sequence of LINE NUMBER clauses
in the report group description entry.

(3) The letters 'NP' represent one or more absolute LINE NUMBER clauses
that appear in consecutive order within the sequence of LINE NUMBER clauses

in the report group description entry, with the phrase NEXT PAGE appearing in
the first, and only in the first, LINE NUMBER clause.

When two abbreviations appear together, they refer to a sequence of LINE
NUMBER clauses that consists of the two specified consecutive sequences. For

example 'AR' refers to a report group description entry within which the 'A'
sequence (defined in rule 1 above) is immediately followed by the 'R' sequence
(defined in rule 2 above) .

2.5.5.4 LINE NUMBER Clause Sequence Substitutions

Where 'AR' is shown to be a permissible sequence in the presentation rules

table, 'A' is also permissible and the same presentation rules are applicable.

•When 'NP R' is shown to be a permissible sequence in the presentation rules

table, 'NP' is also permissible and the same presentation rules are applicable.

2.5.5.5 Saved Next Group Integer Description

Saved next group integer is a data item that is addressable only by the
RWCS. When an absolute NEXT GROUP clause specifies a vertical positioning
value which cannot be accommodated on the current page, the RWCS stores that

.value in saved next group integer. After page advance processing, the RWCS
positions the next body group using the value stored in saved next group
integer.

2.5.5.6 Table 1 - REPORT HEADING Group Presentation Rules Table

The table on page VIII- 12 points to the appropriate presentation rules for
all permissible combinations of LINE-NUMBER and NEXT GROUP clauses in a REPORT
HEADING report group.

2.5.5.6.1 Table 1 Presentati on Rul es

(1) Upper Limit Rule. The first line number on which the REPORT HEADING
report group can be presented is the line number specified by the HEADING
phrase of the PAGE clause.

(2) Lower Limit Rules

a. The last line number on which the REPORT HEADING report group can
be presented is the line number that is obtained by subtracting 1 from the

value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

VIII-11

Report Writer - Report Group Description

Table 1 - REPORT HEADING Group Presentation Rules Table

+

4-

-f

-f

++

-f

I
Pi

d

^d

d

^d

d

^d

o Q o o o o to
W a

•H •H
•H

•H

•H

iH 1 N

•H

4-) 4-)
4.)

4J

4-)

4J

ft)
•Ul

CCJ

CO cO CO
CO

CO

O
tH • d

4-1

d d d d d

in

d m m
O 'O

1— 1 o

CD

•H •H
•r4

•H
•H

•H

CO n ri

W -i-J

'g

5

'e

O -u o O
<; -d O o

CJ
u

o

CJ)

o
d

o o
I— 1

r-H
iH

rH

iH

rH

•H CO CO
CO

CO CO

to

^ CO ■t-i
4-J

bO
bO

bO

bO bO bO

CO

0 tl)

•H

1)

QJ

(D

CD CU

CU

o
•H c

CO

T-^

rH
rH rH tH

CO

iH CO

CO

IW

•H

^-1 -H O r-\
1-4 rH tH iH

iH

M fa P-i hJ fa M M
1—4

M M

•a ■a

50

W d
w

pH
1 H

•H

0)

CO

W 23

4J

CO

O

CO

a

CU

iH c
iz; £5

+J

m

in
in

m

in

m m

in

M O
(U

fa 1-4 CJ CO

0)
•

a. uJ
o

d)
X o

cO

cj

CO

o

•H
•H

CD
u

<r

<t

<(■

tH U-l

•H

a,
O

<
<u

a.
d CO
o

•r-l

CO

+J 4J

CO
CO

CO
CO

,n

JQ

o

•H

CO

•H

CO
CO

CO
en

CO

c^ CO

}-l

•H a

CO

<U

•H

O 1
to fa fa I-J fa 1
tC

O

4J

•H

;5

0

CO
CO

x>

to CO

CO

U3

CO

1 O

•H

<M CM

CM
CM CN CM CM <;

i-J
1
1 1 <u

u

4-J 4J

tu

a,

"4-4

ex

•H

M

>j
fa no

1)
d)

tl)

GE

<D CU

GE

Pi CO

4J

> <

4-1

>

<:

(J)

•H

fa

•H

fa

CO

r-l

4J

iH

4J

tH
O

CO

O

CO

^ O

CO ,H
CO

iH

1^
w

CU

w

tu

w

■K

Pi

Pi

•K

IW Pi
O fa

■K

CO
a ̂

<u

0)

CO

Pi

Pi

;i w & 2;
o

<:

<

<1

< Pi

Pi

Pi Pi CD M
CO

tu

.d

IH

o
d
o

•H

4J

fa

•H

O
CO

CU

to

o 4-4

d
o

•H

■u

(0

o

CO CU

cs

CO

CU

fa

CO

d

iH

CO 3

<u

o U
1

O iH

•H

CO

3

J-J

Pi

tH iH bO

^

CO

w
U O d iH

CJ

4-t

CU

•H

Pi

U

iH

1 w U O
o fa o

CU CJ

o w

rH ♦H

u

•H

o

iH

d M
o d

(U

fa CU

hJ

w

E ̂

fa >
d 3

4-»

CO

•H

(U

M

•H

iH bO

O e d H
O o

CO

CU

<u

u

Xi

o CO d
M-l

d

■u

CO

iH

•rl

•rl

CO

1 1

4J

M

CO

d o M M d

CU

IH

M M o

4J

CO

4-»

M >

•H

d d

tu

>

4J

CU

CU
iH tu

CO

3

tu

bO -H >>

5-1

bO

CO

>

tH

d

CO

fa

<U

iH

CO 13

fa
u

tH

CO
iH

tu
CU

4J

tu

CU

^ O

CO

CU

CO

CO

<

4J

< d CO

+
*

•JC

<u

CO

3

CO

tH

fa

t3

O

tL5

w

23

m

CO

I
M
M

(H

>

CU

bO

CO

fa

CU
CU

CO

VIII-12

Eeport Writer - Report Group Description

b. The last line number on which the REPORT HEADING report group can

be presented is the line number specified by integer-1 of the PAGE clause.

(3) First Print Line Position Rules

a. The first print line of the REPORT HEADING report group is pre-
sented on the line number specified by the integer of its LINE NUMBER clause.

b. The first print line of the REPORT HEADING report group is pre-
sented on the line number obtained by adding the integer of the first LINE

NUMBER clause and the value obtained by subtracting 1 from the value of

integer-2 of the HEADING phrase of the PAGE clause.

c. The REPORT HEADING report group is not presented.

d. The first print line of the REPORT HEADING report group is pre-

sented on the line number obtained by adding the contents of its LINE-COUNTER
(in this case, zero) to the integer of the first LINE NUMBER clause.

(4) Next Group Rules

a. The NEXT GROUP integer must be greater than the line number on

which the final print line of the REPORT HEADING report group is presented.

In addition, the NEXT GROUP integer must be less than the line number speci-

fied by the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the

final print line of the REPORT HEADING report group is presented must be less

than the value of integer-3 of the FIRST DETAIL phrase of the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report
group is to be presented entirely by itself on the first page of the report.
The RWCS processes no other report group while positioned to the first page
of the report.

(5) Final LINE-COUNTER Setting Rules

a. After the REPORT HEADING report group is presented, the RWCS places

the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the REPORT HEADING report group is presented, the RWCS places

the sum of the NEXT GROUP integer and the line number on which the final print

line of the REPORT HEADING report group was presented into LINE-COUNTER as the
final LINE-COUNTER setting.

c. After the REPORT HEADING report group is presented, the RWCS places

zero into LINE-COUNTER as the final LINE-COUNTER setting,

d. After the REPORT HEADING report group is presented, the final LINE-
COUNTER setting is the line number on which the final print line of the REPORT

HEADING report group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

VIII-13

Report Writer - Report Group Description

2.5.5.7 Table 2 - PAGF HEADING Group Presentation Rulc^ Table

Tlie following table points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
HEADING report group.

Table 2 - PAGE HEADING Group Presentation Rules Table

Applicable Rules

If the PAGE clause is specified ****

Sequence of
LINE NUMBER

claus es*

NEXT GROUP
cl aus e Upper Limit

Lower
Limit

First Print
Line Position

Next
Group

Final LINE- COUNTER Setting

A R 1 2 3a

4a
R 1 2

3b 4a

3c
4b

* See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

A blank entry in column 1 or column 2 indicates that the named claiise is
totally absent from the report group description entry.

*** A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses.

***:!c If the PAGE clause is omitted from the report description entry, then a

PAGE HEADING report group may not be defined. (See page VIII-45, The
TYPE Clause.)

2.5.5.7.1 Table 2 Presentation Rules

(1) Upper Limit Rules. If a REPORT HEADING report group has been presented

on the page on which the PAGE HEADING report group is to be presented, then the
first line number on which the PAGE HEADING report group can be presented is

one greater than the final LINE-COUNTER setting established by the REPORT
HEADING.

Otherwise the first line number on which the PAGE HEADING report group

can be presented is the line number specified by the HEADING phrase of the
PAGE clause.

(2) Lower Limit Rule. The last line number on which the PAGE HEADING

report group can be presented is the line number that is obtained by subtract-
ing one (1) from the value of integer-3 of the FIRST DETAIL phrase of the PAGE

clause.

VIII-14

Report Writer - Report Group Description

(3) First Print Line Position Rules.

a. The first print line of the PAGE HEADING report group is presented
on the line nuirljer specified by the integer of its LINE NUMBER clause.

b. If a REPORT HEADING report group has been presented on the page on
which the PAGE HEADING report group is to be presented, then the sum of the

final LINE-COUNTER setting established by the REPORT HEADING report group and
the integer of the first LINE NUMBER, clause of the PAGE HEADING report group
defines the line number on which the first print line of the PAGE HEADING
report group is presented.

Otherwise the sum of the integer of the first LINE NUMBER clause
of the PAGE HEADING report group and the value obtained by subtracting one (1)

from the value of integer-2 of the HEADING phrase of the PAGE clause defines
the line number on which the first print line of the PAGE HEADING report group

is presented. j

c. The PAGE HEADING report group is not presented.

(4) Final LINE-COUNTER Setting Rules

a. The final LINE-COUNTER setting is the line number on wh'ich the
final print line of the PAGE HEADING report group was presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

2.5.5.8 Table 3 - Body Group Presentation Rules Table

The table on page VIII-16 points to the appropriate presentation rules for
all permissible combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL

HEADING, DETAIL and CONTROL FOOTING report groups.

2.5.5.8.1 Table 3 Presentation Rules

(1) Upper Limit Rule. The first line number on which a body group can be
presented is the line number specified by the FIRST DETAIL phrase of the PAGE
claiase.

(2) Lower Limit Rules. The last line number on which a CONTROL HEADING

report group or DETAIL report group can be presented is the line number
specified by the LAST DETAIL phrase of the PAGE clause.

The last line number on which a CONTROL FOOTING report group can be
presented is the line number specified by the FOOTING phrase of the PAGE clause

(3) Fit Test Rules.

a. If the value in LINE-COUNTER is less than the integer of the first
absolute LINE NUMBER clause, then the body group shall be presented on the
page to which the report is currently positioned.

Otherwise the RWCS executes page advance processing. After the
PAGE HEADING report group (if defined) has been processed, the RWCS determines

VIII- 15

Report yviter - Report Group Description

Table 3 - Body Group Presentation Rules Table

•K •K ■K

to
(1) iH

Pi
(U

r-l

O

•H

rH

p-
<:

Qi
W

tH •

W +J o +-> < -d
P-i E

o

M

0)

•H

•4-1

•H

O CU

a, 0)
•H

w
o
<

0)

-5C

rH I

J3
O <D O CO

■M

CO

•H

(i(PL| pL|

•HMO
U C/5

X o

^L^ pL, fL,

4-1

■U 0)
•H (U

o

a. B
p. -H t3 hJ

P

o <u
Ph w

K o w

la

0)
O M

<U M

CO o

+

03

bO

rH

in

C
o

•H

■U

03

d

•H

-i

o

Csl Csl

Pi

P^

03

0)

rH

CM

C3

0)

rH m

bO

01

rH
rH

M

CM

p4
p-1

CM

03

OO iH

to

03

CO 03

(0

•H

4J

03

■M

CU
rH

CO

14H

O

MH

o
O

P-i

rH

0)

t3

d o o O
o d

Ph

•H

0)

CD

■P

(U CO

a

43

•H

03

X

>-)

d W
O

0)

CO

QJ

4-)

•D

4-1

d
CO

to

OJ

4-<

4-1

03

to

d

4J

Pi

^1
,d

<u

CO

w
O

4->

o

<+-!

CO on TP
 g

*\

03

•H

d
d

4-1

4-J

•H

o

03

Cu

W

•H

O

•H

d

+J

•H

}-i

M

03

U
i-J

•
P d

(0
rH

0)

•
O

•H

0)

O
U-j

CO

0)

T3

o O 3

CO

(U

csl

03

3

&.

CO d

rH

CO

w d 3

0)

o

CJ rH

g O

rH

•H

u

CO

U P

rH rH

^<

to

W

P-I

CJ

O d

to

Pt!

rH

o

4-1

03

•H

rH

§ W

>-l

o

rO

-i

o a

03

o

03

O o w H

rH

T <

>-i

•H

X
O

rH

d M W
O 03

P.

03

;a

W
i

&.

>

;z;

d

0)

•H

o;

03

M

•H

rH 00

O e d
O o 0)

03

0)

>-l

^ ■

«\
O CO d

MH

d

4-1

CO

in

i-H

•H
•H

CO CO

1

4J

U 1
M

CO

>^

d

>^

O

IH

M
M d

i-l

03

UH

M M

IH

o

4J

CO

4-1

M H
>

•H

d d

03

> >

4-t

03

03

rH

03

OJ

03 03

bS)

•H

£30
00

OJ > d

rH

d

03

03

Pu

03
rH

Oj

P. J-i

rH

03

rH

03

4-1

e 03

0)

0)

O

03

03

03

CO <:

4J

<;

d

C/2

CA)

•K
•K

•K

+

•K

•K

t

•K

VIII-16

Beport Writer - Report Group Desoriptio'n "

I whether the saved next group integer location was set when the final body group

' was presented on the preceding page. (See final LINE-COUNTER setting rule 6a
on page VIII-18.) If the saved next group integer was not so set, the body

group shall be presented on the page to which the report is currently position-
j ed. If the saved next group integer was so set, the RWCS moves the saved next

i group integer into LINE-COUNTER, resets the saved next group integer to zero,
i and reapplies fit test rule 3a.

b. If a body group has been presented on the page to which the report
is currently positioned, the RWCS computes a trial sum in a work location. The

trial sum is computed by adding the contents of LINE-COUNTER to the integers of
all LINE NUMBER clauses of the report group. If the trial sum is not greater

than the body group's lower limit integer, then the report group is presented
on the current page. If the trial sum exceeds the body group's lower limit
integer, then the RWCS executes page advance processing. After the PAGE HEADING
report group (if defined) has been processed, the RWCS reapplies fit test rule 3b.

j If no body group has yet been presented on the page to which the
I report is currently positioned, the RWCS determines whether the saved next group
I integer location was set when the final body group was presented on the preced-

' ing page. (See final LINE-COUNTER setting rule 6a on page VHI-18.) If the
saved next group integer was not so set, the body group shall be presented on

ii the page to which the report is currently positioned. If the saved next group

' integer was so set, the RWCS moves the saved next group integer into LINE-
COUNTER, resets the saved next group integer to zero, and computes a trial sum
in a work location.

The trial sum is computed by adding the contents of LINE-COUNTER to
I' the integer one (1) and the integers of all but the first LINE NUMBER clause

' of the body group. If the trial sum is not greater than the body group's
lower limit integer, then the body group is presented on the current page. If

II the trial sum exceeds the body group's lower limit integer, then the RWCS
executes page advance processing. After the PAGE HEADING report group (if
defined) has been processed, the RWCS presents the body group on that page.

; c. If a body group has been presented on the page to which the report

I is currently positioned, the RWCS executes page advance processing. After the
c PAGE HEADING report group (if defined) has been processed, the RWCS reapplies

i fit test rule 3c.
J If no body group has yet been presented on the page to which the
report Is currently positioned, the RWCS determines whether the saved next
group integer location was set when the final body group was presented on the

j' preceding page. (See final LINE-COUNTER setting rule 6a on page VIII-18.) If
;, the saved next group integer was not so set, the body group shall be presented
; on the page to which the report is currently positioned. If the saved next
; group integer was so set, the RWCS moves the saved next group integer into

LINE-COUNTER and resets the saved next group integer to zero. If then the •
value in LINE-COUNTER is less than the integer of the first absolute LINE
NUMBER clause, the body group shall be presented on the page to which the
report is currently positioned. Otherwise the RWCS executes page advance

processing. After the PAGE HEADING report group (if defined) has been process-
ed, the RWCS presents the body group on that page.

VIII-17

Report Writer - Report Group Description

(4) First Print Line Position Rules

a. The first print line of the body group is presented on the line

number specified by the integer of its LINE NUl-lBER clause. *

b. If the value in LINE-COUNTER is equal to or greater than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if no body

group has previously been presented on the page to which the report is current-
ly positioned, then the first print line of the current body group is presented

on the line immediately following the line indicated by the value contained in
LINE- COUNTER.

If the value in LINE-COUNTER is equal to or greater than the line
number specified by the FIRST DETAIL phrase of the PAGE clause, and if a body

group has previously been presented on the page to which the report is current-
ly positioned, then the first print line of the current body group is presented

on the line that is obtained by adding the contents of LINE-COUNTER and the
integer of the first LINE NUMBER clause of the current body group.

If the value in LINE-COUNTER is less than the line number speci-
fied by the FIRST DETAIL phrase of the PAGE clause, then the first print line

of the body group is presented on the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.

d. The sum of the contents of LINE-COUNTER and the integer of the
first LINE NUMBER clause defines the line number on which the first print line
is presented.

(5) Next Group Rule. The integer of the absolute NEXT GROUP clause must
specify a line number that is not less than that specified in the FIRST DETAIL
phrase of the PAGE clause, and that is not greater than that specified in the
FOOTING phrase of the PAGE clause.

(6) Final LINE-COUNTER Setting Rules

a. If the body group that has just been presented is a CONTROL FOOTING
report group and if the CONTROL FOOTING report group is not associated with the

highest level at which the RWCS detected a control break, then the final LINE-
COUNTER setting is the line number on which the final print line of the CONTROL
FOOTING report group was presented.

For all other cases the RWCS makes a comparison of the line number

on which the final print line of the body group was presented and the integer
of the NEXT GROUP clause. If the former is less than the latter, then the

RWCS places the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER
setting. If the former is equal to or greater than the latter, then the RWCS
places the line number specified by the FOOTING phrase of the PAGE clause into

LINE-COUNTER as the final LINE-COUNTER setting; in addition the RWCS places
the NEXT GROUP integer into the saved next group integer location.

b. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated with
the highest level at which the RWCS detected a control break, then the final

VII I- 18

Report Writer - Report Group Description

LINE-COUNTER setting is the line number on which the final print line of the
CONTROL FOOTING report group was presented.

For all other cases the RWCS computes a trial sum in a work loca-
tion. The trial sum is computed by adding the integer of the NEXT GROUP clause

to the line number on which the final print line of the body group was present-
ed. If the sura is less than the line number specified by the FOOTING phrase

of the PAGE clause, then the RWCS places that sum into LINE-COUNTER as the
final LINE-COUNTER setting. If the sum is equal to or greater than the line
number specified by the FOOTING phrase of the PAGE clause, then the RWCS
places the line number specified by the FOOTING phrase of the PAGE clause

into LINE-COUNTER as the final LINE-COUNTER setting.

c. If the body group that has just been presented is a CONTROL FOOT-
ING report group, and if the CONTROL FOOTING report group is not associated

with the highest level at which the RWCS detected a control break, then the

final LINE-COUNTER setting is- the line number on which the final print line
of the CONTROL FOOTING report group was presented.

For all other cases the RWCS places the line number specified by

the FOOTING phrase of the PAGE clause into LINE-COUNTER as the final LINE-
COUNTER setting.

d. The final LINE-COUNTER setting is the line number on which the
final print line of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a non-printable
body group.

f. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not associated with
the highest level at which the RWCS detected a control break, then the final

LINE-COUNTER setting is the line number on which the final print line of the
CONTROL FOOTING report group was presented.

For all other cases the RWCS places the suroi of the line number on

which the final print line was presented and the NEXT GROUP integer into

LINE-COUNTER as the final LINE-COUNTER setting.

VIII-19

Report Writer - Report Group Description

2.5.5.9 Table 4 - PAGE FOOTING Presentation Rules

The following table points to the appropriate presentation rules for all
permissible combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
FOOTING report group.

Table 4 - PAGE FOOTING Presentation Rules Table

Applicable Rules ***

If the PAGE clause is specified ****

Sequence of
LINE NUMBER

clauses*

NEXT GROUP
clause Upper Limit

Lower
Limit

First Print
Line Position

Next

Group

Final LINE- COUNTER Setting

A R Absolute 1 2
3a

4a

5a
A R Relative 1 2

3a 4b 5b
A R 1 2 3a

5c

3b

5d * See page VIII-10, LINE NUMBER Clause Notation, for a description of the
abbreviations used in column 1.

A blank entry in column 1 or column 2 indicates that the named clause is
totally absent from the report group description entry.

A blank entry in an applicable rules column indicates the absence of the
named rule for the given combination of LINE NUMBER and NEXT GROUP clauses

**** If the PAGE clause is omitted from the report description entry, then a

PAGE FOOTING report group may not be defined. (See page VIII-45, The
TYPE Clause.)

2.5.5.9.1 Table 4 Presentation Rules

(1) Upper Limit Rule. The first line number on which the PAGE FOOTING
report group can be presented, is the line number obtained by adding one to

the value of integer-5 of the FOOTING phrase of the PAGE clause.

(2) ' Lower Limit Rule. The last line number on which the PAGE FOOTING
report group can be presented is the line number specified by integer-1 of
the PAGE clause.

(3) First Print Line Position Rules

a. The first print line of the PAGE FOOTING report group is presented
on the line specified by the integer of its LINE NUMBER clause.

b. The PAGE FOOTING report group is not presented.

VI 1 1- 20

Report Writer - Report Group description

(4) NEXT GROUP Rules

a. The NEXT GROUP integer must be greater than the line number on

which the final print line of the PAGE FOOTING report group is presented. In

addition, the NEXT GROUP integer must not be greater than the line number

specified by integer-1 of the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the

final print line of the PAGE FOOTING report group is presented must not be

greater than the line number specified by integer-1 of the PAGE clause.

(5) Final LINE-COUNTER Setting Rules

a. After the PAGE FOOTING report group is presented, the RWCS places

the NEXT GROUP integer into LINE-COUNTER as the final LINE-COUNTER setting.

b. After the PAGE FOOTING report group is presented, the RWCS places

the sum of the NEXT GROUP integer and the line number on which the final print

line of the PAGE FOOTING report group was presented into LINE-COUNTER as the

final LINE-COU'NTER setting.

c. After the PAGE FOOTING report group is presented the final LINE-

COUNTER setting is the line number on which the final print line o'f the PAGE
FOOTING report group was presented.

d. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

2.5.5.10 Table 5 - REPORT FOOTING Presentation Rules Table

The table on page VIII-22 points to the appropriate presentation rules for
all premissible combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT
FOOTING report group.

2.5.5.10.1 Table 5 Presentation Rules

(1) Upper Limit Rules

a. If a PAGE FOOTING report group has been presented on the page to
which the report is currently positioned, then the first line number on which
the REPORT FOOTING report group can be presented is one greater than the final

LINE-COUNTER setting established by the PAGE FOOTING report group.

Otherwise the first line number on which the REPORT FOOTING report
group can be presented is the line number obtained by adding one and the value

of integer-5 of the PAGE clause.

b. The first line number on which the REPORT FOOTING report group can
be presented, is the line number specified by the HEADING phrase of the PAGE
clause.

(2) Lower Limit Rule. The last line number on which the REPORT FOOTING

report group can be presented is the line number specified by integer-1 of
the PAGE clause.

VIII-21

Report 'Writer - Report Group Description

Table c

J —

REPORT FOOTING Pres

1

+ C!

JL

-r

>-<
O

W

r*

*H

1 { I H

CO

-U CO
cC

CO

rH •
12; S

4J

a
<r

d
O

1 1 Q

<D

•H

CU
t-J o CO

r h xj

r>

tj

P-(W r\
\J

>

CL)

•H

rrt
rCj CO

4-J 4-J
*^

rrl
UJJ

t/}

C <\)
n\

CO

•H 0 to
1 — I

. , 1

'H

o

t— i
1

t— 1

p 1 1 1
Pi .

1 — 1 1 — i w

CU ■

r-\

bO

^)

w d

Pi

iH 1 H

•H

W 12; U

nj

CO

rC-J

0)

d
. -4.

<J-

r-H

'rH

t— 1 o

i-Q

Ctj
CO

n3

O
\J

•iH

CU
rH

•H

p,

ij [

p,

•H

O CJ
D

^-1 (1)

-1

Tf\

Uj

1-1

■H

*-/

*H

CU

■U

CO

x>

o

0)

W

•H

CO
en

•H C

CO V-i -H Q , (
[t I

i-J w

w
o

4-)

<!

n ■ CNJ
CM CM

O

, 1
Q)

hJ

rd 4-1

"tW

+J

1 — 1

CU
CU

rrt

Co

J3

P,

•H

I— i
1—1 1—1

»— '

iJ
P4 o

CU
ct)

»^

cl

TtT HM

o w

■K

O S cn
<u

Pi

Q) cn

Pi

0-1

CO

<

pa

QJ M
i-i a

CO

q;
to

CU

CO

CU

•H

d

4-J

cO

CU

I— 1

CO

Mh CJ

CU

Zi

o
O

CO

P-i

1 — 1

(D

C O O
o d

Pi

•H

13
CU

o

4J

CU

to

Cl.
r-i

,Q

H

•H

CO cO

PS

C W
O

CU

CO

CD

CU

*

4-J i-i

>-.

d

f-i

tn

cO Co

4-J

CU

CO

d

4-J

Pi

M

CU

to

O o

CW

c

•H

to o

CU

•H

d

4-J

O

CO

w

•H

u

•H

c

fs;

4-J

•H

V-J

s

1— 1

c\3

CJ

hJ

•U

ci

t— I

o

•H

CU

O U-l

CJ

o
CNI

Q)

Cl,

to

d
CO

r3

O
6 o I — t

•H

cfi

4J

t-H
60

}-«

CO

• O d 1 — 1
O

4J

0)

•H

Pi

u r-8 n
w C O

J3

Q 6 o

cx

CtJ

O

fi;

CU

o o
t-H

r-H

•H

O r-S d
O C

CU CU

w B ^ >
a ^

4J

•H

M

•H

00

O 6 c

tj

o

CO
CU

0) 5-1

o

Cfl

M-l d

4-1

r—)

•H

1

4-1

U
M

CO

>^

d

>>

o

}-<

CU

u
M o

4J

CO

4-1

> 0 d o

J-J

CO

CU
c\J

'J

bO

•H

5-1

Cv)

> C r-l d

a.

CU

CO

rH

CO

'Xi

5-1

iH

CO

rH (U

Cl)

4-1

r:

to

CU

O
CO

CO

<;

4-1

< d

•K

*

CU

CO

d

CO

rH

Pi 1

M

hJ

0)

CO

ro

I
M
M

1-1
>

CU

bO

CO

CU

<U

+

VIII-22

Report WY'ite-r - Report Group Desariptidn

(3) First Print Line Position Rules

a. The first print line of the REPORT FOOTING report group is pre-
sented on the line specified by the integer of its LINE NUMBER clause.

b. If a PAGE FOOTING report group has been presented on the page to

which the report is currently positioned, then the sum of the final LINE-
COUNTER setting established by the PAGE FOOTING report group and the integer

of the first LINE NUl^IBER clause of the REPORT FOOTING report group defines the
line number on which the first print line of the REPOPvT FOOTING report group
is presented. OthenN/ise the sum of the integer of the first LINE NUMBER
clause of the REPORT FOOTING report group, and the line number specified by

the value of integer-5 of the FOOTING phrase of the PAGE clause defines the
line number on which the first print line of the REPORT FOOTING report group
is presented.

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause

directs that the REPORT FOOTING report group is presented on a page on which
no other report group has been presented. The first print line of the REPORT

FOOTING report group is presented on the line number specified by the integer
of its LINE NUMBER clause.

d. The sum of the contents of LINE-COUNTER and the integer of the

first LINE NU1>IBER clause defines the line nuniier on which the first print
line is presented.

e. The REPORT FOOTING report group is not presented.

(4) Final LINE-COUNTER Setting Rules.

a. The final LINE-COUNTER setting is the line number on which the
final print line of the REPORT FOOTING report group is presented.

b. LINE-COUNTER is unaffected by the processing of a non-printable
report group.

VIII~23

Report Writer - BLOCK CONTAINS

2.6 THE BLOCK CONTAINS CLAUSE

2.6.1 Function

The BLOCK CONTAINS clause specifies the size of a phy:;ical record.

2.6.2 General Format

BLOCK CONTAINS [integer- 1 TO] integer- 2

2.6.3 General Rules

(1) This clause is required except when:

a. A physical record contains one and only one complete logical
record.

b. The hardware device assigned to the file has one and only one

physical record size.

c. The hardware device assigned to the file has more than one
physical record size but the implementor has designated one as standard. In
this case, the absence of this clause denotes the standard physical record
size,

(2) The size of the physical record may be stated in terms of RECORDS >
unless one of the following situations exist, in which case the RECORDS
phrase must not be used

a. In mass storage files, where logical records may extend across

physical records.

b. The physical record contains padding (area not contained in a
logical record) .

c. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied.

(3) Wien the word CHARACTERS is specified, the physical record size is

specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to represent
the items within the physical record.

(4) If only integer-2 is shown, it represents the exact size of the
physical record. If integer-1 and integer-2 are both sViown, they refer to
the minimum and maximum size of the physical record, respectively.

(5) If logical records of differing size are grouped into one physical
record, the technique for determining the size of each logical record is
specified by the implementor.

I RECORDS
1 CHARACTERS

VIII-24

Report l-^riter - CODE

2.7 THE CODE CLAUSE

2.7.1 Function

The CODE clause specifies a two character literal that identifies each

print line as belonging to a specific report.

2.7.2 General Format

CODE literal-1

2.7.3 Syntax Rules

(1) Literal-1 is a two character nonnumeric literal.

(2) If the CODE clause is' specified for any report in a file, then it
must be specified for all reports in the same file.

2.7.4 General Rules

(1) When the CODE clause is specified, literal-1 is automatically placed
in the first two character positions of each Report Writer logical record.

(2) The positions occupied by literal-1 are not included in the
description of the print line, but are included in the logical record size.

VIII-25

Report WHter - CODE-SET

2.8 THE CODE -SET CLAUSE

2.8.1 Function

The CODE-SET clause specifies the character code set used to represent
data on the external media.

2.8.2 General Format

CODE-SET IS alphabet-name

2.8.3 Syntax Rules

(1) When the CODE-SET clause is specified for a file, all data in that
file must be described as usage is DISPLAY and any signed numeric data must be
described with the SIGN IS SEPARATE clause.

(2) The alphabet-name clause referenced by the CODE-SET clause must not
specify the literal phrase.

(3) The CODE-SET clause may only be specified for non-mass storage files.

2.8.4 General Rules

. (1) If the CODE-SET clause is specified, alphabet-name specifies the
character code convention used to represent data on the external media. It

also specifies the algorithm for converting the character codes on the external
media from the native character codes. This code conversion occurs during

the execution of an output operation. (See page II-8, The SPECIAL-NAMES
Paragraph.)

(2) If the CODE-SET clause is not specified, the native character code
set is assumed for data on the external media.

VIII-26

Report Writer -
COLUMN NUMBER

2.9 THE COLUMN NUMBER CLAUSE

2.9.1 Function

The COLUMN NUMBER clause identifies a printable item and specifies the
column number position of the item on a print line.

2.9.2 General Format

COLUMN NUMBER IS integer- 1

2.9.3 Syntax Rules

(1) The COLU>IN NUMBER clause can only be specified at the elementary level

within a report group. The COLUMN NUblBER clause, if present, must appear in
or be subordinate to an entry that contains a LINE NUMBER clause.

(2) Within a given print line, the printable items must be defined in
ascending column number order such that each character defined occupies a

unique position.

2.9.4 General Rules

(1) The COLUMN NUMBER clause indicates that the object of a SOURCE clause
or the object of a VALUE clause or the sum counter defined by a SUM clause is

to' be presented on the print line. The absence of a COLUMN NUMBER clause
indicates that the entry is not to be presented on a print line.

(2) Integer-1 specifies the column number of the leftmost character posi-
tion of the printable item.

(3) The Report Writer Control System supplies space character for all
positions of a print line that are not occupied by printable items.

(A) The first position of the print line is considered to be column
number 1.

VI I 1-2 7

Report Writer - CONTROL

2.10 THE CONTROL CLAUSE

2.10.1 Function '

The CONTROL clause establishes the levels of the control hierarchy for the
report .

2.10.2 General Format

CONTROL IS ̂ 1 data-name-1 [, data-name-2] . . . 1

CONTROLS are] [FINAL [, data-name-1 [, data-name-2] . . .]j

2.10.3 Syntax Rules

(1) Data-name-1 and d^ta-name-2 must not be defined in the Report Section.

Data-name-1 and data-nameT2 may be qualified but must not be subscripted or
indexed.

(2) Each data-name must identify a different data item.

(3) Data-name-1, data-name-2, must not have subordinate to it a data
item whose size is variable as defined in the OCCURS clause. (See page III-2,
The OCCURS Clause.)

2.10.4 General Rules

(1) The data-names and the word FINAL specify the levels of the control
hierarchy. FINAL, if specified, is the highest control, data-name-1 is the
major control, data-name-2 is an intermediate control, etc. The last data-
name specified is the minor control.

(2) The execution of the chronologically first GENERATE statement for a
given report causes the RWCS to save the values of all control data items

associated with that report. On subsequent executions of all GENERATE state-
ments for that report, control data items are tested by the RWCS for a change

of value. A change of value in any control data item causes a control break

to occur. The control break is associated with the highest level for which

a change of value is noted. (See page VIII-51, The GENERATE Statement,)

(3) The Report Writer Control System tests for a control break by compar-
ing the contents of each control data item with the prior contents saved from

the execution of the previous GENERATE statement for the same report. The

RWCS applies the inequality relation test described on page 11-41, The Relation
Condition, as follows:

a. If the control data item is a numeric data item, the relation

test is for the comparison of two numeric operands.

b. If the control data item is an index data item, the relation test
is for the comparison of two index data items.

VIII-28

/ Report Writer - CONTROL

c. If the control data item is a data item other than as described in

paragraph 3a and 3b, the relation test is for the comparison of two nonnumeric
operands.

See page II-6, PROGRAM COLLATING SEQUENCE clause.

(A) FINAL is used when the most inclusive control group in the report is
not associated with a control data-name.

VIII-29

Report Writer - Data-Name

2.11 THE DATA-NAME CLAUSE

2.11.1 Functi(^n

A data-name specifies the name of the data being described. ^

2.11.2 General Format

data-name

2.11.3 Syntax Rules

(1) In the Report Section a data-name need not appear in a data descrip-
tion entry and FILLER must not be used.

2.11.4 General Rules

(1) In the Report Section, data-name must be given in the following cases:

a. When the data-name represents a report group to be referred to by
a GENERATE or a USE statement in the Procedure Division.

b. When reference is to be made to the sum counter in the Procedure

Division or Report Section.

c. When a DETAIL report group is referenced in the UPON phrase of
the SUM clause.

d. When the data-name is required to provide sum counter qualification

VIII-30

Report Writer - GR
OUP INDICATE

2.12 THE GROUP IND
ICATE CLAUSE

2 12.1 Function

•f-i,... that the associated p
rintable item xs

,.fe:r"oI ̂
<^^ o. its .epo« srcup a

f.e. a control

break or page adva
nce.

2.12.2 General Fo
rmat

GROUP INDICATE

2 12.3 Syntax Rul
es

^.lv acnear in a DETAIL r
eport group

(1) The GROUP INDICATE
 clause may only app

ear

entry that defines
a printable item.

2 12.4 General Rules

■^■^A -it- causes the SOURCE or

a) I£ a GKO«P X-ICATE
Clause is ̂ Pe- .^.t^ca-

VALUE clause to be ignored
 and spaces PP

or,t-«r-ion of the DETAIL rep
ort group in the

a. On the first pre
sentatxon or

report, or

.ni-«tlon of the DETAIL
report group after every

b. On the first pres

entation or

page advance, or

on cue first p.esen.
aaon of tHe ̂ AXL

report group after e
verv

control break.

*fes neither a PAGE clause
 nor a

(2^ If the report description entry specx x presented the first

CONTROL clause, tLn a GROUP "^^/^^^fi^E statement is executed. There-

•rer";aferare"
su^P^^^^^^^^^^

^^ " "^"^^^^

VIII-31

Report Writer - LABEL RECORDS

2.13 THE LABEL RECORDS CLAUSE

2.13.1 Function

The LABEL RECORDS clause specifies whether labels are present.

2.13.2 General Format

RECORD IS ̂ (STANDARD
LABEL

.) 1

RECORDS ARE 1 OMITTED

2.13.3 syntax Rules

(1) This clause is required in every File Description entry.

2.13.4 General Rules

(1) OMITTED specifies that no explicit labels exist for the file or the
device to which the file is assigned.

(2) STANDARD specifies that labels exist for the file or the device to

which the file is assigned and the labels conform to the implementor 's label
specifications .

VIII-32

Report Writer - LINE NUMBER

2.14 THE LINE NUMBER CLAUSE

2.14.1 Function

The LINE NUMBER clause specifies vertical positioning information for its

report group.

2.14.2 General Format

LINE NUMBER IS Jinteger-l foN NE}Cr PAGE]
jpLUS integer-2 i

2.14.3 Syntax Rules

(1) Integer-1 and integer-2 must not exceed three significant digits in
length.

Neither integer-1 nor integer-2 may be specified in such a way as to
cause any line of a report group to be presented outside of the vertical sub-

division of the page designated for the report group type, as defined by the

PAGE clause. (See page VIII-35, The PAGE Clause.)

(2) Within a given report group description entry, an entry that contains
a LINE NUMBER clause must not contain a subordinate entry that also contains a
LINE NUMBER clause.

(3) Within a given report group description entry, all absolute LINE
NUMBER clauses must precede all relative LINE NUMBER clauses.

(4) Within a given report group description entry, successive absolute
LINE NUMBER clauses must specify integers that are in ascending order. The
integers need not be consecutive.

(5) If the PAGE clause is omitted from a given report group description
entry, only relative LINE NU>IBER clauses can be specified in any report group

description entry within that report.

(6) Within a given report group description entry a NEXT PAGE phrase can
appear only once and, if present, must be in the first LINE NUMBER clause in
that report group description entry.

A LINE NUMBER clause with the NEXT PAGE phrase can appear only in the

description of body groups and in a REPORT FOOTING report group.

(7) Every entry that defines a printable item (see page VIII-27, The
COLUMN NUMBER Clause) must either contain a LINE NUMBER clause, or be subordi-

nate to an entry that contains a LINE NUMBER clause.

(8) The first LINE NUMBER clause specified within a PAGE FOOTING report
group must be an absolute LINE NUMBER clause.

VIII-33

Report Writer - LINE NUMBER

2.14.4 General Rules

(1) A LINE NUMBER clause must be specified to establish each print line
of a report group. . V

' (2) The RWCS effects the vertical positioning specified by a LINE NUMBER
clause, before presenting the print line established by that LINE NUMBER clause.

(3) Integer-1 specifies an absolute line number. An absolute line number
specifies the line number on which the print line is presented.

(4) Integer-2 specifies a relative line number. If a relative LINE NUMBER
clause is not the first LINE NUMBER clause in the report group description
entry, then the line number on which its print line is presented is determined

by calculating the sum of the line number on which the previous print line of

the report group was presented and integer-2 of the relative LINE NUMBER clause.
I

If a relative LINE NUMBER clause is the first LINE NUMBER clause in

the report group description entry, then the line number on which its print
line is presented is determined by the rules stated in paragraph 2.5.5,

Presentation Rules Tables, beginning on page VIII-9.

(5) The NEXT PAGE phrase specifies that the report group is to be presented

beginning on the indicated line number on a new page. (See paragraph 2.5.5,

Presentation Rules Tables, beginning on page VIII-9.)

VIII-34

Report Writer - NEXT GROUP

2.15 THE NEXT GROUP CLAUSE

2.15.1 Function

The NEXT GROUP clause specifies information for vertical positioning of a

page following the presentation of the last line of a report group.

2.15.2 General Format

2.15.3 Syntax Rules

(1) A report group entry must not contain a NEXT GROUP clause unless the
description of that report group contains at least one LINE NUMBER clause.

(2) Integer-1 and integer-2 must not exceed three significant digits in
length.

(3) If the PAGE clause is omitted from the report description entry only

a relative NEXT GROUP clause may be specified in any report group description
entry within that report.

(4) The NEXT PAGE phrase of the NEXT GROUP clause must not be specified

in a PAGE FOOTING report group.

(5) The NEXT GROUP clause must not be specified in a REPORT FOOTING report

group or in a PAGE HEADING report group.

2.15.4 General Rules

(1) Any positioning of the page specified by the NEXT GROUP clause takes
place after the presentation of the report group in which the clause appears.

(See paragraph 2.5.5, Presentation Rules Table, beginning on page VIII-9.)

(2) The vertical positioning information supplied by the NEXT GROUP clause
is interpreted by the RWCS along with information from the TYPE and PAGE clauses,

and the value in LINE-COUNTER, to determine a new value for LINE-COUNTER. (See

paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.)

(3) The NEXT GROUP clause is ignored by the RWCS when it is specified on
a CONTROL FOOTING report group that is at a level other than the highest level
at which a control break is detected.

(4) The NEXT GROUP clause of a body group refers to the next body group to
be presented, and therefore can affect the location at which the next body
group is presented. The NEXT GROUP clause of a REPORT HEADING report group
can affect the location at which the PAGE HEADING report group is presented.

The NEXT GROUP clause of a PAGE FOOTING report group can affect the location
at which the REPORT FOOTING report group is presented. (See paragraph 2.5.5,

Presentation Rules Tables, beginning on page VIII-9.)

NEXT GROUP IS

VIII-35

IIMMBMBillllll'Mllin^*^'™''''"™™™'"

Report Writer - PAGE

2.16 THE PAGE CLAUSE

2.16.1 Function

The PAGE clause defines the length of a page and the vertical subdivisions

within which report groups are presented. - -

2.16.2 General Format

PAGE
LIMIT IS

LIMITS ARE integer- 1

""line

LINES

[> HEADING integer-2] [, FIRST DETAIL integer-3]

[' ̂-AST DETAIL integer-4] [, FOOTING integer-5]

2.16.3 Syntax Rules

(1) The HEADING, FIRST DETAIL, LAST DETAIL and FOOTING phrases may be
written in any order.

(2) Integer-1 must not exceed three (3) significant digits in length.

(3) Integer-2 must be greater than or equal to one (1).

(4) Integer-3 must be greater than or equal to integer-2.

(5) Integer-4 must be greater than or equal to integer-3.

(6) Integer-5 must be greater than or equal to integer-4.

(7) Integer-1 must be greater than or equal to integer-5.

(8) The following rules indicate the vertical subdivision of the page in
which each TYPE of report group mav appear when the PAGE clause is specified.

(See page VIII-38, Page Regions Table.)

a. A REPORT HEADING report group that is to be presented on a page
by itself, if defined, must be defined such that it can be presented in the

vertical subdivision of the page that extends from the line number specified

by integer-2 to the line number specified by integer-1, inclusive.

A REPORT HEADING report group that is not to be presented on a
page by itself, if defined, must be defined such that it can be presented in

the vertical subdivision of the page that extends from the line number speci-
fied by integer-2 to the line number specified by integer-3 minus 1, inclusive.

b. A PAGE HEADING report group, if defined, must be defined such that
it can be presented in the vertical subdivision of the page that extends from

the line number specified by integer-2 to the line number specified by
integer-3 minus 1, inclusive.

Report Writer - PAGE

c. A CONTROL HEADING or DETAIL report group, if defined, must be
defined such that it can be presented in the vertical subdivision of the page

that extends from the line number specified by integer-3 to the line number

specified by integer-4, inclusive.

d. A CONTROL FOOTING report group, if defined, must be defined such
that it can be presented in the vertical subdivision of the page that extends

from the line number specified by integer-3 to the line number specified by
integer-5, inclusive.

e. A PAGE FOOTING report group, if defined, must be defined such that
it can be presented in the vertical subdivision of the page that extends from

the line number specified by integer-5 plus 1 to the line number specified by
integer- 1, inclusive.

.f . A REPORT FOOTING report group that is to be presented on a page
by itself, if defined, must be defined such that it can be presented in the
vertical subdivision of the page that extends from the line number specified

by integer-2 to the line number specified by integer- 1, inclusive.

A REPORT FOOTING report group that is not to be presented on a

page by itself, if defined, must be defined such that it can be presented in

the vertical subdivision of the page that extends from the line number speci-
fied by integer-5 plus 1 to the line number specified by integer-1, inclusive.

. (9) All report groups must be described such that they can be presented

on one page. The RWCS never splits a multi-line report group across page
boundaries .

2.16.4 General Rules

(1) The vertical format of a report page is established using the integer
values specified in the PAGE clause.

a. Integer-1 defines the size of a report page by specifying the
number of lines available on each page.

b. HEADING integer-2 defines the first line nuimber on which a REPORT
HEADING or PAGE HEADING report group may be presented.

c. FIRST DETAIL integer-3 defines the first line number on which a
body group may be presented. REPORT HEADING and PAGE HEADING report groups

may not be presented on or beyond the line number specified by integer-3.

d. LAST DETAIL integer-4 defines the last line number on which a
CONTROL HEADING or DETAIL report group may be presented.

e. FOOTING integer-5 defines the last line number on which a CONTROL
FOOTING report group may be presented. PAGE FOOTING and REPORT FOOTING report

groups must follow the line number specified by integer-5.

(2) If the PAGE clause is specified the following implicit values are
assumed for any omitted phrases;

VIII-37

Report Writer - PAGE

a. If the HEADING phrase is omitted, a value of one (1) is assumed

for integer-2.

b. If the FIRST DETAIL phrase is omitted, a value equal to integer-2^
is given to integer-3.

c. If the LAST DETAIL and the FOOTING phrases are both omitted, the

value of integer-1 is given to both integer-4 and integer-5.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is

omitted, the value of integer-5 is given to integer-4.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is

omitted, the value of integer-4 is given to integer-5.

(3) If the PAGE clause; is omitted, the report consists of a single page
of indefinite length. _ i

(4) The presentation rules for each TYPE of report group are specified

in paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.

2.16.5 Page Regions Table

Page regions that are established by the PAGE clause are described below.

Report Groups That May Be
Presented In The Region

First Line Number

Of The Region

Last Line Number
Of The Region

REPORT HEADING described with NEXT
GROUP NEXT PAGE

REPORT FOOTING described with LINE

integer-1 NEXT PAGE

integer-2 integer-1

REPORT HEADING not described with
NEXT GROUP NEXT PAGE

PAGE HEADING
integer-2 integer-3 minus 1

CONTROL HEADING

DETAIL integer-3 integer-4

CONTROL FOOTING
integer-3 integer-5

PAGE FOOTING

REPORT FOOTING not described with

LINE integer-1 NEXT PAGE

integer-5

plus 1

integer-1

VIII-38

Report Writer - RECORD CONTAINS

2.17 THE RECORD CONTAINS CLAUSE

2.17.1 Function

The RECORD CONTAINS clause specifies the size of data records.

2.17.2 General Format

RECORD CONTAINS [integer- 1 TO] integer-2 CHARACTERS

2.17.3 General Rules

(1) The size of each data record is completely defined within the record

description entry, therefore this clause is never required. VJhen present,
however, the following notes apply:

a. Integer-2 may not be used by itself unless all the data records in
the file have the same size. In this case integer-2 represents the exact

number of characters in the data record. If integer-1 and integer-2 are both
shown, they refer to the minimum number of characters in the smallest size
data record and the maximum number of characters in the largest size data

record, respectively.

b. The size is specified in terms of the number of character posi-

tions required to store the logical record, regardless of the types of charac-
ters used to represent the items within the logical record. The size of a

record is determined by the sum of the number of characters in all fixed

length elementary items plus the sum of the maximum number of characters in
any variable length item subordinate to the record. This sum may be different

from the actual size of the record; see page 1-85, Selection of Character
Representation and Radix; page 11-33, The SYNCHRONIZED Clause; and page 11-35,
The USAGE Clause.

VIII-39

Report Writer - REPORT

2.18 THE REPORT CLAUSE

2.18.1 Function

The REPORT clause specifies the names of reports that comprise a report ^
file.

2.18.2 General Format

REPORT IS ̂ ^ , r ^1

REPOR^AReJ r^Po^t-name-1 [, report-name-
2 J ...

2.18.3 Syntax Rules

(1) .Each report-name specified in a REPORT clause must be the subject of

a report description entry in' the Report Section. The order of appearance
of the report-names is not significant.

(2) A report-name must appear in only one REPORT clause.

(3) The subject of a file description ' entry that specifies a IlEPORT clause
may only be referred to by the OPEN OUTPUT, OPEN EXTEND, and CLOSE statements.

2.18.4 General Rules

(1) The presence of more than one report-name in a REPORT clause indicates
that the file contains more than one report.

VIII-40

Report Writer - SOURCE

2.19 THE SOURCE CLAUSE

2.19.1 Function

The SOURCE clause identifies the sending data item that is moved to an
associated printable item defined within a report group description entry.

2.19.2 General Format

SOURCE IS identifier-1

2.19.3 Syntax Rules

(1) Identifier-l may be defined in any section of the Data Division. If
identifier-1 is a Report Section item it can only be:

a. PAGE-COUNTER, or

b. LINE-COUNTER, or

c. A sum counter of the report within which the SOURCE clause appears.

(2) Identifier-1 specifies the sending data item of the implicit MOVE
statement that the RWCS will execute to move identifier-1 to the printable
item. Identifier-1 must be defined such that it conforms to the rules for

sending items in the MOVE statement. (See page II-7A, The MOVE Statement.)

2.19.4 General Rules

(1) The RWCS formats the print lines of a report group just prior to

presenting the report group. (See page VIII-45, The TYPE Clause.) It is at
this time that the implicit MOVE statements specified by SOURCE clauses are
executed by the RWCS .

VIII-Al

Report Writer -SUM

2.20 THE SUM CLAUSE

2.20.1 Function

The SUM clause establishes a sum counter and names the data items to be
summed .

2.20.2 General Format

•^SUM identif ier-1 [, identif ier-2] ...

I^UPON data-name- 1 [, data-name-2] ... j

RESET ON
|data-name-3

I FINAL

2.20.3 Syntax Rules

(1) Identif ier-1 and identif ier-2 must be defined as numeric data items.

When defined in the Report Section, identifier-1 and identifier-2 must be the
names of sum counters.

If the UPON phrase is omitted, any identifiers in the associated SUM
clause which are themselves sum counters must be defined either in the same

report group that contains this SUM clause or in a report group which is at
a lower level in the control hierarchy of this report.

If the UPON phrase is specified, any identifiers in the associated
SUM clause must not be sum counters.

(2) Data-name-1 and data-name-2 must be the names of DETAIL report groups
described in the same report as the CONTROL FOOTING report group in which the

SUM clause appears. Data-name-1 and data-name-2 may be qualified by a
report-name .

(3) A SUM clause can appear only in the description of a CONTROL FOOTING

report group.

(4) Data-name-3 must be one of the data-names specified in the CONTROL

clause for this report. Data-name-3 must not be a lower level control than
the associated control for the report group in which the RESET phrase appears

FINAL, if specified in. the RESET phrase, must also appear in the
CONTROL clause for this report.

(5) The highest permissible qualifier of a sum counter is the report-name

2.20.4 General Rules

(1) The SUM clause establishes a sum counter. The sum counter is a numer

data item with an optional sign. At object time the RWCS adds directly into

the sum counter each of the values contained in identifier-1 and identifier-2
This addition is performed under the rules of the ADD statement. (See page

11-55, The ADD Statement.)

VIII-42

Report Writer - SUM

(2) The size of the sura counter is equal to the number of receiving char-
acter positions specified by the PICTURE clause that accompanies the SUM clause

in the description of the elementary item.

(3) Only one sum counter exists for an elementary report entry regardless
of the number of SUM clauses specified in the elementary report entry.

(A) If the elementary report entry for a printable item contains a SUM
clause, the sum counter serves as a source data item. The RWCS moves the data

contained in the sum counter, according to the rules of the MOVE statement, to
the printable item for presentation.

(5) If a data-name appears as the subject of an elementary report entry
that contains a SUM clause, the data-name is the name of the sum counter; the

data-name is not the name of the printable item that the entry may also define.

It is permissible for- Procedure Division statements to alter the
contents of sum counters.

(6) Addition of the identifiers into sum counters is performed by the RWCS
during the execution of GENERATE and TERMINATE statements. There are three

categories of sum counter incrementing called subtotalling, crossf ooting , and
rolling forward. Subtotalling is accomplished during execution of GENERATE
statements only, after any control break processing but before processing of

the DETAIL report group. (See page VIII-51, The GENERATE Statement.) Cross-
footing and rolling forward are accomplished during the processing of CONTROL

FOOTING report groups. (See page VIII-45, The TYPE Clause.)

(7) The UPON phrase provides the capability to accomplish selective
subtotalling for the DETAIL report groups named in the phrase.

(8) The RWCS adds each individual addend into the sum counter at a time

that depends upon the characteristics of the addend.

a. When the addend is a sum counter defined in the same CONTROL FOOTING

report group, then the accumulation of that addend into the sum counter is

termed crossf ooting.

Crossfooting occurs when a control break takes place and at the

time the CONTROL FOOTING report group is processed.

Crossfooting is performed according to the sequence in which sum
counters are defined within the CONTROL FOOTING report group. That is, all
crossfooting into the first suip counter defined in the CONTROL FOOTING report
group is completed, and then all crossfooting into the second sum counter
defined in the CONTROL FOOTING report group is completed. This procedure is
repeated until all crossfooting operations are completed.

b. When the addend is a sum counter defined in a lower level CONTROL

FOOTING report group, then the accumulation of that addend into the sum counter
is termed rolling forward. A sum counter in a lov/er level CONTROL FOOTING

report group is rolled forward when a control break occurs and at the time
that the lower level CONTROL FOOTING report group is processed.

VIII-43

. Report Writer - SUM

c. When the addend is not a sum counter the accumulation into a sum

counter of such an addend is called subtotalling. If the SUM clause contains
the UPON phrase, the addends are sub totalled when a GENERATE statement for the

designated DETAIL report group is executed. If the SUM clause does not contain
the UPON phrase, the addends which are not sum counters are subtotalled when

any GENERATE data-name statement is executed for the report in which the SUM
clause appears.

(9) If two or more of the identifiers specify the same addend, then the
addend is added into the sum counter as many times as the addend is referenced

in the SUM clause. It is permissible for two or more of the data-names to

specify the same DETAIL report group. When a GENERATE data-name statement
for such a DETAIL report group is given, the incrementing occurs repeatedly,

as many times as data-name appears in the UPON phrase.

(10) For the subtotalling that occurs when a GENERATE report-name statement

is executed, see page VIII-j51, The GENERATE Statement.

(11) In the absence of an explicit RESET phrase, the RWCS will set a sum
counter to zero at the time that the RWCS is processing the CONTROL FOOTING
report group within which the sum counter is defined. If an explicit RESET
phrase is specified, then the RWCS will set the sum counter to zero at the

time that the RWCS is processing the designated level of the controT hierarchy.

(See page VIII-45, The TYPE Clause.)

Sum counters are initially set to zero by the RWCS during the execution

of "the INITIATE statement for the report containing the sum counter.

VIII-44

Report Writer - TYPE

2.21 THE TYPE CLAUSE

2.21.1 Function

The TYPE clause specifies the particular type of report group that is
described by this entry and indicates the time at which the report group is
to be processed by the Report Writer Control System.

2.21,2 General Format

2.21.3 Syntax Rules

(1) RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.
DE is an abbreviation for DETAIL.
OF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

(2) REPORT HEADING, PAGE HEADING, CONTROL HEADING FINAL, CONTROL FOOTING

FINAL, PAGE FOOTING, and REPORT FOOTING report groups may each appear no more
than once in the description of a report.

(3) PAGE HEADING and PAGE FOOTING report groups may be specified only if

a PAGE clause is specified in the corresponding report description entry.

(4) Data-name-1, data-name-2 and FINAL, if present, must be specified in
the CONTROL clause of the corresponding report description entry. At most,
one CONTROL HEADING report group and one CONTROL FOOTING report group can be

specified for each data-name or FINAL in the CONTROL clause of the report
description entry. However, neither a CONTROL HEADING report group nor a

CONTROL FOOTING report group is required for a data-name or FINAL specified
in the CONTROL clause of the report description entry.

(5) In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT FOOTING

report groups, SOURCE clauses and USE statements must not reference any of the
following:

TYPE IS

VIII-45

Report Writer - TYPE

a. Group data items containing a control data item.

b. Data items subordinate to a control data item.

c. A redefinition or renaming of any part of a control data item.

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses and USE
statements must not reference control data-names.

(6) When a GENERATE report-name statement is specified in the Procedure
Division, the corresponding report description entry must include no more than

one DETAIL report group. If no GENERATE data-name statements are specified
for such a report, a DETAIL report group is not required.

(7) The description of a report must include at least one body group.

2.21.4 General Rules

(1) DETAIL report groups are processed by the RWCS as a direct result of

GENERATE statements. If a report group is other than TYPE DETAIL, its pro-
cessing is an automatic RWCS function.

(2) The REPORT HEADING phrase specifies a report group that is processed

by the RWCS only once, per report, as the first report group of that report.
The REPORT HEADING report group is processed during the execution of the
chronologically first GENERATE statement for that report.

(3) The PAGE HEADING phrase specifies a report group that is processed by

the RWCS as the first report group on each page of that report except under
the following conditions:

a. A PAGE HEADING report group is not processed on a page that is to
contain only a REPORT HEADING report group or only a REPORT FOOTING report

group.

b. A PAGE HEADING report group is processed as the second report
group on a page when it is preceded by a REPORT HEADING report group that is
not to be presented on a page by itself.

See paragraph 2.5.5, Presentation Rules Tables, beginning on page

VIII-9, for further information.

(4) The CONTROL HEADING phrase specifies a report group that is processed

by the RWCS at the beginning of a control group for a designated control data-
name or, in the case of FINAL, is processed during the execution of the

chronologically first GENERATE statement for that report. During the execution
of any GENERATE statement at which the RWCS detects a control break, any

CONTROL HEADING report groups associated with the highest control level of the
break and lower levels are processed.

(5) The DETAIL phrase specifies a report group that is processed by the
RWCS when a corresponding GENERATE statement is executed,

(6) The CONTROL FOOTING phrase specifies a report group that is processed

by the RWCS at the end of a control group for a designated control data-name.

VIII-46

Report Writer - TYPE

In the case of FINAL, the CONTROL FOOTING report group is processed

only once per report as the last body group of that report. During the
execution of any GENERATE statement in which the RWCS detects a control break,

any CONTROL FOOTING report group associated with the highest level of the
control break or more minor levels is presented. All CONTROL FOOTING report

groups are presented during the execution of the TERMINATE statement if there
has been at least one GENERATE statement executed for the report. (See page

VIII-55, The TERMINATE Statement.)

(7) The PAGE FOOTING phrase specifies a report group that is processed by
the RWCS as the last report group on each page except under the following
conditions :

a. A PAGE FOOTING report group is not processed on a page that is to
contain only a REPORT HEADING report group or only a REPORT FOOTING report

group .

I
b. A PAGE FOOTING report group is processed as the second to last

report group on a page when it is followed by a REPORT FOOTING report group
that is not to be processed on a page by itself.

See paragraph 2.5,5, Presentation Rules Tables, beginning on page

VIII-9, for further information.

(8) The REPORT FOOTING phrase specifies a report group that is processed
by the RWCS only once per report and as the last report group of that report.

The REPORT FOOTING report group is processed during the execution of a corre-
sponding TERMINATE statement, if there has been at least one GENERATE state-

ment executed for the report. (See page VIII-55, The TERMINATE Statement.)

(9) The sequence of steps that the RWCS executes when it processes a
REPORT HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or REPORT FOOTING

report group is described below.

a. If there is a USE BEFORE REPORTING procedure that references the

data-name of the report group, the USE procedure is executed.

b. If a SUPPRESS statement has been executed or if the report group

is not printable, there is no further processing to be done for the report

group .

c. Otherwise, the RWCS formats the print lines and presents the

report group according to the presentation rules for that type of report group.

(See paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.)

(10) The sequence of steps that the RWCS executes when it processes a
CONTROL FOOTING report group is described below.

The GENERATE rules specify that when a control break occurs, the RWCS
produces the CONTROL FOOTING report groups beginning at the minor level, and
proceeding upwards, through the level at which the highest control break was

sensed. In this regard, it should be noted that even though no CONTROL FOOTING

report group has been defined for a given control data-name, the RWCS will still
have to execute the step described in paragraph lOf below if a RESET phrase

within the report description specifies that control data-name.

VIII-47

Report Writer - TYPE

a. Sum counters are crossfooted, i.e., all sum counters defined in

this report group that are operands of SUM clauses in the same report group

are added to their sum counters. (See page VIII-42, The SUM Clause.)

b. Sum counters are rolled forward, i.e., all sum counters defined

in the report group that are operands of SUM clauses in higher level CONTROL
FOOTING report groups are added to the higher level sum counters. (See page

VIII-42, The SUM Clause.)

c. If there is a USE BEFORE REPORTING procedure that references the

data-name of the report group the USE procedure is executed.

d. If a SUPPRESS statement has been executed or if the report group

is not printable, the RWCS next executes the step described in paragraph lOf
below.

e. Otherwise the RWCS formats the print lines and presents the report
group according to the presentation rules for CONTROL FOOTING report groups.

f . Then the RWCS resets those sum counters that are to be reset when

the RWCS processes this level in the control hierarchy. (See page VIII-42,

The SUM Clause.) ' ■ •

(11) The DETAIL report group processing that the RWCS executes in response

to a GENERATE data-name statement is described in paragraphs 11a through lie
below.

When the description of a report includes exactly one DETAIL report

group, the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in paragraph 11a through paragraph

lid below. These steps are performed as though a GENERATE data-name statement
were being executed.

When the description of a report includes no DETAIL report groups, the

detail-related processing that the RWCS executes in response to a GENERATE

report-name statement is described in paragraph 11a below. This step is per-
formed as though the description of the report included exactly one DETAIL

report group, and a GENERATE data-name statement were being executed." =

a. The RWCS performs any subtotalling that has been designated for

the DETAII report group. (See page VIII-42, The SUM Clause.)

b. If there is a USE BEFORE REPORTING procedure that refers to the

data-name of the report group, the USE procedure is executed.

c. If a SUPPRESS statement has been executed or if the report group

is not printable there is no further processing done for the report group.

d. If the DETAIL report group is being processed as a consequence of

a GENERATE report-name statement, there is no further processing done for the
report group.

e. Otherwise the RWCS formats the print lines and presents the report
group according to the presentation rules for DETAIL report groups. (See

paragraph 2.5.5, Presentation Rules Tables, beginning on page VIII-9.)

VIII-48

Report WHter - TYPE

(12) \>nien the RWCS is processing a CONTROL HEADING, CONTROL FOOTING, or

DETAIL report group, as described in general rules 9, 10, and 11, the RWCS
may have to interrupt the processing of that body group after deterinining
that the body group is to be presented, and execute a page advance (and

process PAGE FOOTING and PAGE HEADING report groups) before actually present-
ing the body group.

(13) During control break processing, the values of control data items that
the RWCS used to detect a given control break are referred to as prior values.

a. During control break processing of a CONTROL FOOTING report group,
any references to control data items in a USE procedure or SOURCE clause
associated with that CONTROL FOOTING report group are supplied with prior
values .

b. When a TERMINATE statement is executed, the RWCS makes the prior
control data item values available to SOURCE clause or USE procedure references

in CONTROL FOOTING and REPORT FOOTING report groups as though a control break

had been detected in the highest control data-name.

c. All other data item references within report groups and their USE

procedures access the current values that are contained within the 'data items
at the time the report group is processed.

VIII-49

Reporp^yriter - VALUE OF

2.22 THE VALUE OF CLAUSE

2.22.1 Function

The VALUE OF clause particularizes the description of an item in the label
records associated with a file.

2.22.3 Syntax Rules

(1) Data-name-l, data-name-2, etc., should be qualified when necessary,
but cannot be subscripted or indexed, nor can they be items described with the
USAGE IS INDEX clause.

(2) Data-name-l, data-name-2, etc., must be in the Working-Storage Section.

(3) See page IV-19, The VALUE OF Clause, for constraints that apply when

Report Writer is associated with Sequential I-O, Level 1.

(1) For an output file, at the appropriate time the value of implementor-
name-1 is made equal to the value of literal-1, or of data-name-l, whichever
has been specified.

(2) A figurative constant may be substituted in the format above wherever
a literal is specified.

2.22.2 General Format

VALUE OF implementor-name-1 IS

r

imp lemen tor-name- 2 IS

2.22.4 General Rules

VIII-50

Report \Jvitev - GEMRATE

3. PROCEDURE DIVISION IN THE REPORT WRITER MODULE

3.1 THE GENERATE STATEMENT

3.1.1 Function

The GENERATE statement directs the RWCS to produce a report in accordance
with the report description that was specified in the Report Section of the
Data Division.

3.1.2 General Format

GENERATE ^ ̂̂"^"^^^'^] ̂ ■ report-namej

3. 1. 3 Syntax Rules

(1) Daca-name must name a TYPE DETAIL report group and may be qualified by
a report-name,

(2) Report-name may be used only if the referenced report descr-iption
contains :

a. A CONTROL clause, and

b. Not more than one DETAIL report group, and

c. At least one body group.

3.1.4 General Rules

Cl) In response to a GENERATE report-name statement, the RWCS performs
summary processing. If all of the GENERATE statements tiaat are executed for

a report are of the form GENERATE report-name, then the report that is pro-
duced is called a summary report. A summary report is one in which no DETAIL

report group is presented.

(2) In response to a GENERATE data-name statement, the RWCS performs
detail processing that includes certain processing that is specific for the

DETAIL report group designated by the GENERATE statement. Normally, the

execution of a GENERATE .data-name statement causes the RWCS to present the
designated DETAIL report group.

(3) During the execution of the chronologically first GENERATE statement
for a given report, the RWCS saves the values within the control data items.

During the execution of the second and subsequent GENERATE statements for the
same report, and until a control break is detected, the RWCS utilizes this set
of control values to determine whether a control break has occurred. VThen a

control break occurs, the RWCS saves the new set of control values, which it
thereafter uses to sense for a control break until another control break occurs.

(4) During report presentation, an automatic functioEi of the RWCS is to

process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS

VIII-51

]

Report Writer - GENERATE

must advance the report to a new page for the purpose of presenting a body
group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page
VIII-9.)

(5) When the chronologically first GENERATE statement for a given report
is executed, the RWCS processes, in order, the report groups that are named

below, provided that such report groups are defined within the report des-
cription. The RWCS also processes PAGE HEADING and PAGE FOOTING report groups

as described in general rule 4. See page VIII-45, The TYPE Clause, for the
actions that the RWCS takes when it processes each type of report group.

a. The REPORT HEADING report group is processed.

b. The PAGE HEADING report group is processed.

c. All CONTROL HEADING report groups are processed from major to minor.

d. If a GENERATE data-name statement is being executed, the process-
ing for the designated DETAIL report group is performed. If a GENERATE

report-name statement is being executed, certain of the steps that are involved
in the processing of a DETAIL report group are performed. (See page VIII-45,
The TYPE Clause.)

(6) I^Jhen a GENERATE statement other than the chronologically first is
executed for a given report, the RWCS performs the steps enumerated below,
as applicable. The RWCS also processes PAGE HEADING and PAGE FOOTING report

groups as described in general rule 4. See page VIII— 45, The TYPE Clause, for
the actions that the RWCS takes when it processes each type of report group.

a. Sense for control break. The rules for determining the equality
of control data items are the same as those specified for relation conditions.
If a control break has occurred then:

1) Enable the CONTROL FOOTING USE procedures and CONTROL FOOTING
SOURCE clauses to access the control data item values ttaat are described on

page VIII-45, The TYPE Clause.

2) Process the CONTROL FOOTING report groupxs in the order minor

to major. Only CONTROL FOOTING report groups that are EBot more major than the
highest level at which a control break occurred are processed.

3) Process the CONTROL HEADING report groups in the order major

to minor. Only the CONTROL HEADING report groups that aare not more major than
the highest level at which a control break occurred are processed.

b. If a GENERATE data-name statement is being executed, the pro-
cessing for the designated DETAIL report group is performed. If a GENERATE

report-name statement is being executed, certain of the steps that are involved

in the processing of a DETAIL report group are performedl. (See page VIII-45,
The TYPE Clause.)

(7) GENERATE statements for a report can be executed only after an
INITIATE statement for the report has been executed and before a TERMINATE,
statement for the report has been executed.

VIII-52

Report]^riter - INITIATE

3.2 THE INITIATE STATEMENT

3.2.1 Function

The INITIATE statement causes the Report Writer Control System to begin the
processing of a report.

3.2.2 General Format

INITIATE report-name- 1 [, report-name-2] ...

3.2.3 Syntax Rules

(1) Each report-name must be defined by a report description entry in
the Report Section of the Data Division.

3.2.4 General Rules

(1) The INITIATE statement performs the following initialization functions
for each named report:

a. All sum counters are set to zero.

b. LINE-COUNTER is set to zero.

c. PAGE-COUNTER is set to one (1).

(2) The INITIATE statement does not open the file with which the report
is associated, therefore an OPEN statement with either the OUTPUT phrase or

the EXTEND phrase for the file must be executed prior to the execution of
the INITIATE statement.

(3) A subsequent INITIATE statement for a particular report-name must not
be executed unless an intervening TERMINATE statement has been executed for

that report-name.

VIII-53

Re-port Writer - SUPPRESS

3.3 THE SUPPRESS STATEMENT

3.3.1 Function

The SUPPRESS statement causes the Report Writer Control System to inhibit '
the presentation of a report group.

3.3.2 General Format

SUPPRESS PRINTING

3.3.3 Syntax Rules

(1) The SUPPRESS statement may only appear in a USE BEFORE REPORTING

procedure .

3.3.4 General Rules

(1) The SUPPRESS statement inhibits presentation only for the report group
named in the USE procedure within which the SUPPRESS statement appears.

(2) The SUPPRESS statement must be executed each time the presentation of
the report group is to be inhibited.

(3) When the SUPPRESS statement is executed, the RWCS is instructed to
inhibit the processing of the following report group functions:

a. The presentation of the print lines of the report group.

b. The processing of all LINE clauses in the report group,

c.
The processing of the NEXT GROUP clause in the report group.

d. The adjustment of LINE-COUNTER.

VIII-54

Report VIriter - TERl^INATE

3.4 THE TERMINATE STATEMENT

3.4.1 Function

The TERMINATE statement causes the Report Writer Control System to complete
the processing of the specified reports.

3.4.2 General Format

TERMINATE report-narae-1 [, report-name-2 1 . . .

3.4.3 Syntax Rules

(1) Each report-name given in a TERMINATE statement nmst be defined by an
RD entry in the Report Section of the Data Division.

3.4.4 General Rules

(1) The TERMINATE statement causes the RWCS to produce all the CONTROL

FOOTING report groups beginning v/ith the minor CONTROL FOOTING report group.
Then the REPORT FOOTING report group is produced. The RWCS makes the prior
set of control data item values available to the CONTROL FOOTING and REPORT

FOOTING SOURCE clauses and USE procedures, as though a control break has been

sensed in the most major control data-name.

(2) If no GENERATE statements have been executed for a report during the

interval between the execution of an INITIATE statement and a TERMINATE state-
ment, for that report, the TERMINATE statement does not cause the RWCS to

produce any report groups or perform any of the related processing.

(3) During report presentation, an automatic function of the RWCS is to
process PAGE HEADING and PAGE FOOTING report groups, if defined, when the RWCS
must advance the report to a new page for the purpose of presenting a body

group. (See paragraph 2.5.5, Presentation Rules Tables, beginning on page

VIII-9.)

(4) The TERMINATE statement cannot be executed for a report unless the

TERMINATE statement was chronologically preceded by an INITIATE statement for
that report and for which no TERMINATE statement has yet been executed.

(5) The TERMINATE statement does not close the file with which the report
is associated; a CLOSE statement for the file must be executed. Every report
in a file that is in an initiated condition must be terminated before a CLOSE
statement is executed for that file.

VIII-55

Report Writer - USE

3.5 THE USE STATEMENT

3.5.1 Function

The USE statement specifies Procedure Division statements that are executed

just before a report group named in the Report Section of the Data Division is

produced.

3.5.2 General Format

USE BEFORE REPORTING identifier.

3. 5. 3 Syntax Rules

(1) A USE statement, when present, must immediately follow a section
header in the declaratives section and must be followed by a period followed

by a space. The remainder of the section must consist of zero, one or more
procedural paragraphs that define the procedures to be used.

(2) Identifier represents a report group. Identifier must not appear in
more than one USE statement.

The GENERATE, INITIATE or TERMINATE statements must not appear in a
paragraph within a USE BEFORE REPORTING procedure.

A USE BEFORE REPORTING procedure must not alter the value of any
control data item.

(3) The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedures.

3.5.4 General Rules

(1) The designated procedures are executed by the Report Writer Control

System just before the named report group is produced. (See page VIlI-45,
The TYPE Clause.)

(2) Within a USE procedure, there must not be any reference to any

nondeclarative procedures. Conversely, in the nondeclarative portion there

must be no reference to procedure-names that appear in the declarative portion,
except that PERFORM statements may refer to a USE BEFORE REPORTING statement
or to the procedures associated with such a USE statement.

VIII-56

Segmentation - Introduction

1. INTRODUCTION TO THE SEGMENTATION MODULE

1.1 FUNCTION

The Segmentation module provides a capability to specify object program
overlay requirements.

1.2 LEVEL CHARACTERISTICS

Segmentation Level 1 provides a facility for specifying permanent and

independent segments (see paragraph 2.2.1 on page IX-2) . All sections with
the same segment-number must be contiguous in the source program. All segments
specified as permanent segments must be contiguous in the source program.

Segmentation Level 2 provides the facility for intermixing sections with

different segment-numbers and allows the fixed portion of the source program
to contain segments that may be overlaid (see paragraph 2.2.2 on page IX-2).

IX- 1

Segmentation - General Description

2. GENERAL DESCRIPTION OF SEGMENTATION

COBOL segmentation is a facility that provides a means by which the user

may communicate with the compiler to specify object program overlay require-
ments.

2.1 SCOPE

COBOL segmentation deals only with segmentation of procedures. As such,
only the Procedure Division and the Environment Division are considered in

determining segmentation requirements for an object program.

2.2 ORGANIZATION

2.2.1 Program Segments

Although it is not mandatory, the Procedure Division for a source program

is usually written as a consecutive group of sections, each of which is com-
posed of a series of closely related operations that are designed to collec-
tively perform a particular function. However, when segmentation is used, the

entire Procedure Division must be in sections. In addition, each section must

be classified as belonging either to the fixed portion or to one of the inde-
pendent segments of the object program. Segmentation in no way affects the

need for qualification of procedure-names to insure uniqueness.

2.2.2 Fixed Portion

The fixed portion is defined as that part of the object program which is

logically treated as if it were always in memory. This portion of the program

is composed of | two types of segments; fixed permanent segments land fixed
overlayable segments.

A fixed permanent segment is a segment in the fixed portion which cannot be

overlaid by any other part of the program. A fixed overlayable segment is a
segment in the fixed portion which, although logically treated as if it were

always in memory, can be overlaid by another segment to optimize memory utili-
zation. Variation of the number of fixed permanent segments in the fixed

portion can be accomplished by using a special facility called the SEGMENT-
LIMIT clause (see page IX- 5 , SEGMENT-LIMIT). Such a segment, if called for
by the program, is always made available in its last used state.

2.2.3 Independent Segments

An independent segment is defined as part of the object program which can
overlay, and can be overlaid by, [either a fixed overlayable segment or another

independent segment. An independent segment is in its initial state whenever
control is transferred (either implicitly or explicitly) to that segment for
the first time during the execution of a program. On subsequent transfers of
control to the segment, an independent segment is also in its initial state
when :

(1) Control is transferred to that segment as a result of the implicit
transfer of control between consecutive statements from a segment with a

different segm&nt-number .

IX- 2

Segmentation - General Description

(2) Control is transferred to that segment as the result of the implicit
transfer of control between a SORT or MERGE statement, in a segment with a

different segment-number, and an associated input or output procedure in that
independent segment.

(3) Control is transferred explicitly to that segment from a segment with

a different segment -number (with the exception noted in paragraph 2 below) .

On subsequent transfer of control to the segment, an independent segment

is in its last-used state when:

(1) Control is transferred implicitly to that segment from a segment with

a different segment-number (except as noted in paragraphs 1 and 2 above) .

(2) Control is transferred explicitly to that segment as the result of
the execution of an EXIT PROGRAM statement.

See paragraph 3.4.2, Explicit and Implicit Transfers of Control, page 1-92.

2.3 SEGMENTATION CLASSIFICATION

Sections which are to be segmented are classified, using a system of

segment-numbers (see paragraph 3.1 on page IX-4) and the following criteria:

(1) Logic Requirements - Sections which must be available for reference at
all times, or which are referred to very frequently, are normally classified
as belonging to one of the permanent segments; sections which are used less

frequently are normally classified as belonging [either to one of the over-
lay able fixed segments or to one of the independent segments, depending on

logic requirements.

(2) Frequency of Use - Generally, the more frequently a section is referred
to, the lower its segment-number, the less frequently it is referred to, the

higher its segment-number.

(3) Relationship to Other Sections - Sections which frequently communicate
with one another should be given the same segment-numbers.

2.4 SEGMENTATION CONTROL

The logical sequence of the program is the same as the physical sequence
except for specific transfers of control. If any reordering of the object
program is required to handle the flow from segment to segment, according to

the rules in paragraph 3.1 on page IX-4, the implementor must provide control
transfers to maintain the logical flow specified in the source program. The
implementor must also provide all controls necessary for a segment to operate

whenever the segment is used. Control may be transferred within a source pro-
gram to any paragraph in a section; that is, it is not mandatory to transfer

control to the beginning of a section.

IX-3

Segmentation - Seginent-Nwrbers

3. STRUCTURE OF PROGRAM SEGMENTS

3.1 SEGMENT-NUMBERS

Section classification is accomplished by means of a system of segment-

numbers. The segment-numlier is included in the section header.

3.1.1 General Format

section-name SECTION [segment- number 1 .

3. 1.2 Syntax Rules

(1) The segment-number must be an integer ranging in value from 0 through
99.

(2) If the segment-number is omitted from the section header, the segment-
number is assumed to be 0.

(3) Sections in the declaratives must contain segment-numbers less than
50.

3.1.3 General Rules

.(1) All sections which have the same segment-number constitute a program

segment. In Level 1 all sections which have the same segment- number must be

together in the source program. | In Level 2 sections with the same segment-
numbers need not be physically contiguous in the source program.

(2) Segments with segment-nuniber 0 through A9 belong to the fixed portion
of the object program. In Level 1 all sections with segment-number 0 through
49 mvist be together in the source program.

(3) Segments with segment-number 50 through 99 are independent segments.

IX-4

Segmentation - SEGMENT-LIMIT

3.2 SEGMENT-LIMIT

Ideally, all program segments having segment-numbers ranging from 0 through
49 should be specified as permanent segments. However, when insufficient mem-

ory is available to contain all permanent segments plus the largest overlayable
segment, it becomes necessary to decrease the number of permanent segments.
The SEGMENT-LIMIT feature provides the user with a means by which he can reduce

the number of permanent segments in his program, while still retaining the log-

ical properties of fixed portion segments (segment-numbers 0 through 49) .

3.2.1 General Format

The SEGMENT-LIMIT clause appears in the OBJECT-COMPUTER paragraph and has
the following format:

[, SEGMENT-LIMIT IS segment-number]

3.2.2 Syntax Rules

(1) Segment-number must be an integer ranging in value from 1 through 49.

3.2.3 General Rules

(1) When the SEGMENT-LIMIT clause is specified, only those segments having

segment-numbers from 0 up to, but not including, the segment- number designated
as the segment- limit, are considered as permanent segments of the object pro-

gram.

(2) Those segments having segment -numbers from the segment-limit through
49 are considered as overlayable fixed segments.

(3) When the SEGMENT-LIMIT clause is omitted, all segments having segment-
numbers from 0 through 49 are considered as permanent segments of the object
program.

IX-5

Segmentation - Restrictions

4. RESTRICTIONS ON PROGRAM FLOW

When segmentation is used, the following restrictions are placed on the
ALTER, PERFORM, MERGE, and SORT statements.

4.1 THE ALTER STATEMENT

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with

a different segment-number .

All other uses of the ALTER statement are valid and are performed even if

the GO TO to which the ALTER refers is in a fixed overlayable segment.

4.2 THE PERFORM STATEMENT

A PERFORM statement that appears in a section that is not in an independent
segment can have within its range, in addition to any declarative sections

whose execution is caused within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraph wholly contained in a single independent
segment .

A PERFORM statement that appears in an independent segment can have within
its range, in addition to any declarative sections whose execution is caused

within that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in the same independent
segment as that PERFORM statement

4.3 THE MERGE STATEMENT

If the MERGE statement appears in a section that is not in an independent

segment, then any output procedure referenced by that MERGE statement must

appear :

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment*

If a MERGE statement appears in an independent segment, then any output
procedure referenced by that MERGE statement must be contained:

a. Totally within non-independent segments, or

b. Wholly within the same independent segment as that MERGE statement.

IX- 6

Segmentation - Restrictions

4.4 THE SORT STATEMENT

If a SORT statement appears in a section that is not an independent segment,

then any input procedures or output procedures referenced by that SORT state-
ment must appear:

a. Totally within non-independent segments, or

b. Wholly contained in a single independent segment.

If a SORT statement appears in an independent segment, then any input

procedures or output procedures referenced by that SORT statement must be
contained :

a. Totally within non-independent segments, or

b. Wholly within the same independent segment as that SORT statement.

IX- 7

Library - Introduction

1. INTRODUCTION TO THE LIBRARY MODULE

1.1 FUNCTION

The Library module provides a capability for specifying text that is to be
copied from a library.

COBOL libraries contain library texts that are available to the compiler
for copying at compile time. The effect of the interpretation of the COPY
statement is to insert text into the source program, where it will be treated
by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function independent

of the COBOL program and according to implementor-def ined techniques.

1.2 LEVEL CHARACTERISTICS

Library Level 1 provides the facility for copying text from a single library
into the source program. Text is copied from the library without change.

Library Level 2 provides the additional capability of replacing all occur-
rences of a given literal, identifier, word or group of words in the library

text, with alternate text, during the copying process. Level 2 also provides
for the availability of more than one COBOL library at compile time.

X-1

Library - COPY

(6) I A comment line occurring in the library text and pseudo-text- 1 is inter-
preted, for purposes of matching, as a single space. [Comment lines appearing

xn pseudo-text-2 and] library text are copied into the source program unchanged.

(7) Debugging lines are permitted within library text land pseudo-text-2.
Debugging lines are not permitted within pseudo-text-1 ; text-words within a

debugging line participate in the matching rules as if the 'D' did not appear
in the indicator area.) If a COPY statement is specified on a debugging line,
then the text that is the result of the processing of the COPY statement will

appear as though it were specified on debugging lines with the following
exception: comment lines in library text will appear as comment lines in the
resultant source program.

(8) The text produced as a result of the complete processing of a COPY
statement must not contain a COPY statement.

(9) The syntactic correctness of the library text cannot be independently
determined. The syntactic correctness of the entire COBOL source program

cannot be determined until all COPY statements have been completely processed,

(10) Library text must conform to the rules for COBOL reference format.

(11) For purposes of compilation, text-words after replacement are placed
in the source program according to the rules for reference format. (See

page 1-105, Reference Format.)

X-4

Debug - Introduction

1. INTRODUCTION TO THE DEBUG MODULE

1.1 FUNCTION

The Debug module provides a means by which the user can describe his
debugging algorithm including the conditions under which data items or
procedures are to be monitored during the execution of the object program.

The decisions of what to monitor and what information to display on the
output device are explicitly in the domain of the user. The COBOL debug
facility simply provides a convenient access to pertinent information.

1.2 LEVEL CHARACTERISTICS

Debug Level 1 provides a basic debugging capability, including the ability
to specify: (a) selective or full procedure monitoring, and (b) optionally
compiled debugging statements.

Debug Level 2 provides the full COBOL debugging facility.

1.3 LANGUAGE CONCEPTS

The features of the COBOL language that support the Debug module are:

a. A compile time switch — WITH DEBUGGING MODE.

b. An object time switch.

c. A USE FOR DEBUGGING statement.

d. A special register — DEBUG-ITEM.

e. Debugging lines.

.1.3.1 DEBUG-ITEM

The reserved word DEBUG-ITEM is the name for a special register generated

automatically by the implementor ' s code that supports the debugging facility.
Only one DEBUG-ITEM is allocated per program. The names of the subordinate
data items in DEBUG-ITEM are also reserved words.

1.3.2 A Compile Time Switch

The WITH DEBUGGING MODE clause is written as part of the SOURCE-COMPUTER
paragraph. It serves as a compile time switch over the debugging statements
written in the program.

When the WITH DEBUGGING MODE clause is specified in a program, all debugging

sections and all debiigging lines are compiled as specified in this section of

the document. I-Jhen the WITH DEBUGGING MODE clause is not specified, all
debugging lines and all debugging sections are compiled as if they were comment
lines.

XI-1

Debug - Intro duct-ion

1.3.3 An Object Time Switch

An object time switch dynamically activates the debugging code inserted by
the compiler. This switch cannot be addressed in the program; it is controlled

outside the COBOL environment. If the switch is 'on*, all the effects of the
debugging language written in the source program are permitted. If the switch

is 'off, all the effects described in paragraph 3.1 on page XI-4, The USE FOR
DEBUGGING Statement, are inhibited. Recompilation of the source program is

not required to provide or take away this facility.

The object time switch has no effect on the execution of the object program

if the WITH DEBUGGING MODE clause was not specified in the source program at
compile time.

XI- 2

Debug - WITH DEBUGGING MODE

2. ENVIRONMENT DIVISION IN THE DEBUG MODULE

2.1 THE WITH DEBUGGING MODE CLAUSE

2.1.1 Function

The WITH DEBUGGING MODE clause indicates that all debugging sections and

all debugging lines are to be compiled. If this clause is not specified, all
debugging lines and sections are compiled as if they were comment lines.

2.1.2 General Format

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

2.1.3 General Rules

(1) If the WITH DEBUGGING MODE clause is specified in the SOURCE- COMPUTER
paragraph of the Configuration Section of a program, all USE FOR DEBUGGING
statements and all debugging lines are compiled.

(2) If the WITH DEBUGGING MODE clause is not specified in the SOURCE-
COMPUTER paragraph of the Configuration Section of a program, any USE FOR

DEBUGGING statements and all associated debugging sections, and any debugging
lines are compiled as if they were comment lines.

XI- 3

Vehug - USE FOR DEBUGGING

3. PROCEDURE DIVISION IN THE DEBUG MODULE

3.1 THE USE FOR DEBUGGING STATEMENT

3.1.1 Function

The USE FOR DEBUGGING statement identifies the user items that are to be

monitored by the associated debugging section.

3.1.2 General Format

section-name SECTION [segment-number] .

cd-name-l

[ALL REFERENCES Of] identif ier-1
USE FOR DEBUGGING ON < f ile-name-1

procedure-name-1
L
ALL PROCEDURES

J

^

cd-name-2

[all references of] identif ier-2
file-name- 2

procedure-name-2
ALL PROCEDURES

Rules

(1) Debugging section(s), if specified, must appear together immediately-
after the DECLARATIVES header.

(2) Except in the USE FOR DEBUGGING statement itself, there must be no

reference to any non-declarative procedure within the debugging section.

(3) Statements appearing outside of the set of debugging sections must not

reference procedure-names defined within the set of debugging siections.

(4) Except for the USE FOR DEBUGGING statement itself, statements appear-
ing within a given debugging section may reference procedure-names defined

within a different USE procedure only with a PERFORM statement.

(5) Procedure-names defined within debugging sections must not appear with-
in USE FOR DEBUGGING statements.

(6) Any given) identif ier, cd-name, file-name, or [procedure-name may appear
in only one USE FOR DEBUGGING statement and may appear only once in that
statement .

(7) The ALL PROCEDURES phrase can appear only once in a program.

(8) When the ALL PROCEDURES phrase is specified, procedure-name-1,

procedure-name-2, ... must not be specified in any USE FOR DEBUGGING statement

XI-4

Debug - USE FOR DEBUGGING

(9) Identif ier-1 , identif ier-2 , must not reference any data item
defined in the Report Section except sum counters.

(10) If the data description entry of the data item referenced by identi-
fier-!, identif ier-2 , contains an OCCURS clause or is subordinate to a

data description entry that contains an OCCURS clause, identif ier- 1 , identi-

f ier-2, must be specified without the subscripting or indexing normally
required.

(11) References to the special register DEBUG-ITEM are restricted to refer-
ences from within a debugging section.

3.1.4 General Rules

(1) In the following general rules all references to cd-narae-1, identi-
fier-!, procedure-name- 1 , and file-name-1 apply equally to cd-name-2,

identif ier-2 , procedure-na,me-2 , and file-name-2, respectively.

(2) Automatic execution of a debugging section is not caused by a state-
ment appearing in a debugging section.

(3) When file-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any OPEN or CLOSE statement that references

file-name-1, and

b. After the execution of any READ statement (after any other speci-
fied USE procedure) not resulting in the execution of an associated AT END or

INVALID KEY imperative statement, and

c. After the execution of any DELETE or START statement that refer-
ences file-name-1.

(4) ̂ 'Then procedure-name-1 is specified in a USE FOR DEBUGGING statement
that debugging section is executed:

a. Immediately before each execution of the named procedure;

b. Immediately after the execution of an ALTER statement which

references procedure-name- 1 .

(5) The ALL PROCEDURES phrase causes the effects described in general rule

4 to occur for every procedure-name in the program, except those appearing
within a debugging section.

(6) \-Jhen the ALL REFERENCES OF identifier-1 phrase is specified, that
debugging section is executed for every statement that explicitly references

identifier-1 at each of the follovjing times:

a. In the case of a WRITE or REWRITE statement immediately before
the execution of that WRITE or REI-TRITE statement and after the execution of

any implicit move resulting from the presence of the FROM phrase.

XI-5

Debug - USE FOR DEBUGGING

b. In tha case of a GO TO statement with a DEPENDING ON phrase,
immediately before control is transferred and prior to the execution of any
debugging section associated with the procedure-name to which control is to be
transferred.

c. In the case of a PERFORM statement in which a VARYING, AFTER, or

UNTIL phrase references identif ier-1 , immediately after each initialization,
modification or evaluation of the contents of the data item referenced by
identif ier-1 .

d. In the case of any other COBOL statement, immediately after
execution of that statement.

If identifier-1 is specified in a phrase that is not executed or
evaluated, the associated debugging section is not executed.

(7) When identifier-1 jis specified without the ALL REFERENCES OF phrase,
that debugging section is executed at each of the following times:

a. In the case of a WRITE or REWRITE statement that explicitly

references identifier-1, immediately before the execution of that WRITE or
REWRITE statement and after the execution of any implicit move respiting
from the presence of the FROM phrase.

b. In the case of a PERFORM statement in which a VARYING, AFTER or

UNTIL phrase references identifier-1, immediately after each initialization,
modification or evaluation of the contents of the data item referenced by

identifier-1.

c. Immediately after the execution of any other COBOL statement
that explicitly references and causes the contents of the data item referenced

by identifier-1 to be changed.

If identifier-1 is specified in a phrase that is not executed or
evaluated, the associated debugging section is not executed.

(8) The associated debugging section is not executed for a specific
operand more than once as a result of the execution of a single statement,
regardless of the number of times that operand is explicitly specified. In

the case of a PERFORM statement which causes iterative execution of a refer-
enced procedure, the associated debugging section is executed once for each

iteration.

Within an imperative statement, each individual occurrence of an
imperative verb identifies a separate statement for the purpose of debugging.

(9) When cd-name-1 is specified in a USE FOR DEBUGGING statement, that
debugging section is executed:

a. After the execution of any ENABLE, DISABLE, and SEND statement

that references cd-name-1,

b. After the execution of a RECEIVE statement referencing cd-name-1
that does not result in the execution of the NO DATA imperative-statement, and

XI-6

Debug - WE FOR DEBUGGING

c. After the execution of an ACCEPT MESSAGE COUNT statement that

references cd-name-l.

(10) A reference to f ile-name-l , identif ier-1 , procedure-name-l or cd-name-l
as a qualifier does not constitute reference to that item for the debugging
described in the general rules above.

(11) Associated with each execution of a debugging section is the special

register DEBUG-ITEl^, which provides information about the conditions that
caused the execution of a debugging section. DEBUG-ITEM has the following
implicit description:

01 DEBUG-ITEM.
02 DEBUG-LINE
02 FILLER

02 DEBUG-NAME
02 FILLER

02 DEBUG-SUB-1
02 FILLER

02 DEBUG-SUB-2
02 FILLER

02 DEBUG-SUB-3
02 FILLER

02 DEBUG-CONTENTS

(12)

PICTURE IS X(6) .

PICTURE IS X VALUE SPACE.
PICTURE IS X(30) .

Pl'iCTURE IS X VALUE SPACE.
PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.

PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.

PICTURE IS S9999 SIGN IS LEADING SEPARATE CHARACTER.
PICTURE IS X VALUE SPACE.
PICTURE IS X(n) .

Prior to each execution of a debugging section, the contents of the

data item referenced by DEBUG-ITEM are space-filled. The contents of data

iteias subordinate to DEBUG-ITEM are then updated, according to the following
general rules, immediately before control is passed to that debugging section.
The contents of any data item not specified in the following general rules
remains spaces.

Updating is accomplished in accordance vjith the rules for the MOVE

statement, the sole exception being the move to DEBUG-CONTENTS when the move
is treated exactly as if it was an alphanumeric to alphanumeric elementary
move with no conversion of data from one form of internal representation to
another.

(13) The contents of DEBUG-LINE is the implementor-def ined means of iden-
tifying a particular source statement.

(14) DEBUG-NAME contains the first 30 characters of the name that caused
the debugging section to be executed.

All qualifiers of the name are separated in DEBUG-NAl'lE by the word

'IN' or 'OF'. Subscripts/indices, if any, are not entered into DEBUG-NAME.

(15) If the reference to a data item that causes the debugging section to
be executed is subscripted or indexed, the occurrence number of each level is

entered in DEBUG-SUB-1, DEBUG-SUB-2, DEBUG-SUB-3 respectively as necessary.

(16) DEBUG-CONTENTS is a data item that is large enough to contain the
data required by the following general rules.

XI- 7

Debug - USE FOR DEBUGGING

(17) If the first execution of the first nondeclarative procedure in the

program causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the first statement of that procedure.

b. DEBUG-NAME contains the name of that procedure.

c. DEBUG-CONTENTS contains 'START PROGRAM'.

(18) If a reference to procedure-name- 1 in an ALTER statement causes the
debugging section to be executed, the following conditions exist:

a. DEBUG-LINE identifies the ALTER statement that references procedure'
name- 1 .

b. DEBUG-NAME contains procedure-name- 1 .

c. DEBUG-CONTENTS contains the applicable procedure-name associated
with the TO phrase of the ALTER statement.

(19) If the transfer of control associated with the execution o.f a GO TO

statement causes the debugging section to be executed, the following conditions
exist:

a. DEBUG-LINE identifies the GO TO statement whose execution transfers

control to procedure-name-1 .

b. DEBUG-NAME contains procedure-name-1.

(20) If reference to procedure-name-1 in the INPUT or OUTPUT phrase of a
SORT or MERGE statement causes the debugging section to be executed, the

following conditions exist:

a. DEBUG-LINE identifies the SORT or MERGE statement that references

procedure-name-1.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains:

1. If the ̂ reference to procedure-name-1 is in the INPUT phrase

of a SORT statement, 'SORT INPUT'.

2. If the reference to procedure-name-1 is in the OUTPUT phrase

of a SORT statement, 'SORT OUTPUT'.

3. If the reference to procedure-name-1 is in the OUTPUT phrase

of a MERGE statement , 'MERGE OUTPUT'.

(21) If the transfer to control from the control mechanism associated with

a PERFORM statement caused the debugging section associated with procedure-
name-1 to be executed, the following conditions exist:

9-73
XI-8

Debug - USE FOR DEBUGGING

a. DEBUG-LINE identifies the PERFORM statement that references

procodure-name-l .

b. DEBUG-NAME contains procedure-name-1 .

c. DEBUG-CONTENTS contains ' PERFORM LOOP ' .

(22) If procedure-name-1 is a USE procedure that is to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the statement that causes execution of the
USE procedure.

b. DEBUG-NAME contains procedure-name-1.

•c. DEBUG-CONTENTS contains 'USE PROCEDURE' .

(23) If an implicit transfer of control from the previous sequential

paragraph to procedure-name-1 causes the debugging section to be executed, the
following conditions exist:

a. DEBUG-LINE identifies the previous statement.

b. DEBUG-NAME contains procedure-name-1.

c. DEBUG-CONTENTS contains ' FALL THROUGH ' .

(24) If references to file-name-1, cd-name-1 causes the debugging section
to be executed, then:

a. DEBUG-LINE identifies the source statement that references file-
name- 1 , cd-name- 1 .

b. DEBUG-NAME contains the name of file-narae-1, cd-name-1.

c. For READ, DEBUG-CONTENTS contains the entire record read.

d. For all other references to file-name-1, DEBUG-CONTENTS contains
spaces .

e. For any reference to cd-name-1, DEBUG-CONTENTS contains the
contents of the area associated with the cd-name.

(25) If a reference to identifier- 1 causes the debugging section to be
executed, then:

a. DEBUG-LINE identifies the source statement that references

identif ier-1 ,

b. DEBUG-NAME contains the name of identif ier-1 , and

c. DEBUG-CONTENTS contains the contents of the data item referenced

by identifier-1 at the time that control passes to the debugging section (see
general rules 6 and 7) .

XI-9

Debug - Debugging Lines

3.2 DEBUGGING LINES

A debugging line is any line with a 'D' in the indicator area of the line.
Any debugging line that consists solely of spaces from margin A to margin R ̂
is considered the same as a blank line.

The contents of a debugging line must be such that a syntactically correct

program is formed with or without the debugging lines being considered as
comment lines.

A debugging line will be considered to have all the characteristics of a
comment line, if the WITH DEBUGGING MODE clause is not specified in the

SOURCE-COMPUTER paragraph .

Successive debugging lines are allowed. Continuation of debugging lines

is permitted, except that each continuation line must contain a 'D' in the
indicator area, and character-strings may not be broken across two lines.

A debugging line is only permitted in the program after the OBJECT-COMPUTER
paragraph .

XI- 10

1. INTRODUCTION TO THE INTER-PROGRAM COMMUNICATION MODULE

1.1 FUNCTION

The Inter-Program Coimnunication module provides a facility by which a pro-
gram can communicate with one or more programs. This communication is provided

by: (a) the ability to transfer control from one program to another within a
run unit and (b) the ability for both programs to have access to the same data
items.

1.2 LEVEL CHARACTERISTICS
i

Inter-Program Communication Level 1 provides a capability to transfer control
to one or more programs whose names are known at compile time and for the
sharing of data among such programs.

Additionally Inter-Program Communication Level 2 provides the capability to
transfer control to one or more programs whose names are not known at compile
time as well as the ability to determine the availability of object time
memory for the program to which control is being passed.

i

I

XII-1

Inter-Program Communication - Linkage Section

2. DATA DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

2.1 LINKAGE SECTION

The Linkage Section in a program is meaningful if and only if the object
program is to function under the control of a CALL statement, and the CALL
statement in the calling program contains a USING phrase.

The Linkage Section is used for describing data that is available through
the calling program but is to be referred to in both the calling and the called
program. No space is allocated in the program for data items referenced by

data-names in the Linkage Section of that program. Procedure Division refer-
ences to these data items are resolved at object time by equating the reference

in the called program to the location used in the calling program. In the case

of index-names, no such correspondence is established. Index-names in the
called and calling program always refer to separate indices.

Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if they
are specified as operands of the USING phrase of the Procedure Division header
or are subordinate to such operands, and the object program is under the
control of a CALL statement that specifies a USING phrase.

The structure of the Linkage Section is the same as that previously

described for the Working-Storage Section, beginning with a section header,
followed by data description entries for noncontiguous data items and/or
record description entries.

Each Linkage Section record-name and noncontiguous item name must be
unique within the called program since it cannot be qualified. Data items
defined in the Linkage Section of the called program must not be associated
with data items defined in the Report Section of the calling program.

Of those items defined in the Linkage Section only data-name- 1, data-name-2,

... in the USING phrase of the Procedure Division header, data items subordi-
nate to these data-names, and condition-names and/or index-names associated

with such data-names and/or subordinate data items, may be referenced in the
Procedure Division.

2.1.1 Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to one
another need not be grouped into records and are classified and defined as
noncontiguous elementary items. Each of these data items is defined in a

separate data description entry which begins with the special level-number 77.

The following data clauses are required in each data description entry:

a. level-number 77
b . data-name
c. the PICTURE clause or the USAGE IS INDEX clause.

Other data description clauses are optional and can be used to complete the
description of the item if necessary.

XII-2

Inter-Program Communication - Linkage Section

2.1.2 Linkage Records

Data elements in the Linkage Section which bear a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. Any clause which is used in an

input or output record description can be used in a Linkage Section.

2.1.3 Initial Values

The VALUE clause must not be specified in the Linkage Section except in

condition-name entries (level 88) .

XII- 3

Inter-Program Communication - Procedure Division

3. PROCEDURE DIVISION IN THE INTER-PROGRAM COMMUNICATION MODULE

3.1 THE PROCEDURE DIVISION HEADER

The Procedure Division is identified by and must begin with the follow-
ing header:

PROCEDURE DIVISION |^ USING data-name- 1 [, data-name-2] ...] .

The USING phrase is present if and only if the object program is to func-
tion under the control of a CALL statement, and the CALL statement in the

calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division header

must be defined as a data item in the Linkage Section of the program in which

this header occurs, and it must have a 01 or 77 level-number.

Within a called program, Linkage Section data items are processed accordin
to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if data-
name- 1 of the Procedure Division header in the called program and data-name- 1
in the USING phrase of the CALL statement in the calling program refer to a
single set of data that is equally available to both the called and calling

programs. Their descriptions must define an equal number of character posi-
tions; however, they need not be the same name. In like manner, there is an

equivalent relationship between data-name-2, in the USING phrase of the

called program and data-name-2, in the USING phrase of the CALL state-
ment in the calling program. A data-name must not appear more than once in

the USING phrase in the Procedure Division header of the called program; how-
ever, a given data-name may appear more than once in the same USING phrase of

a CALL statement.

If the USING phrase is specified, the INITIAL clause must not be present
in any CD entry. (See syntax rule 2 of the communication description entry

on page XIII-4.)

XII-4

Inter-Pro gram Communication - CALL

3.2 THE CALL STATEMENT

3.2.1 Function

The CALL statement causes control to be transferred from one object program
to another, within the run unit.

3.2.2 General Format

CALL { i-teral-r | [̂̂^^^ data-name- 1 [, data-narae-2 1 ...]

\} OVERFLOW imperative-statement]

3.2.3 Syntax Rules
I

(1) Literal-l must be a nonnumeric literal.

(2) Identifier-1 must be defined as an alphanumeric data item such that
its value can be a program name.

(3) The USING phrase is included in the CALL statement only if there is

a USING phrase in the Procedure Division header of the called program and the
number of operands in each USING phrase must be identical.

(4) Each of the operands in the USING phrase must have been defined as a

data item in the File Section, Working-Storage Section, Communication Section,
or Linkage Section, and must have a level-number of 01 or 77. Data-name-1,

data-name-2, may be qualified when they reference data items defined in
the File Section or the Communication Section.

3.2.4 General Rules

(1) The program whose name is specified by the value of literal-lj or |
identifier- 1 is the called program; the program in which the CALL statement
appears is the calling program.

(2) The execution of a CALL statement causes control to pass to the called

program.

(3) A called program is in its initial state the first time it is called
within a run unit and the first time it is called after a CANCEL to the

called program.

On all other entries into the called program, the state of the program
remains unchanged from its state when last exited. This includes all data

fields, the status and positioning of all files, and all alterable switch
settings.

(4) If during the execution of a CALL statement, it is determined that

the available portion of object time memory is incapable of accommodating the

program specified in the CALL statement and the ON OVERFLOW phrase is speci-
fied, no action is taken and the imperative-statement is executed.

XI 1-5

Inter-Program Communi cation - CALL

If the above condition exists and the ON OVERFLOW phrase is not speci-
fied, the effects of the CALL statement are defined by the iraplementor .

(5) Called programs may contain CALL statements. However, a called pro-
gram must not contain a CALL statement that directly or indirectly calls the

calling program.

(6) The data-names, specified by the USING phrase of the CALL statement,
indicate those data items available to a calling program that may be referred

to in the called program. The order of appearance of the data-names in the

USING phrase of the CALL statement and the USING phrase in the Procedure Divi-
sion header is critical. Corresponding data-names refer to a single set of

data which is available to the called and calling program. The correspondence

is positional, not by name. In the case of index-names, no such correspon-
dence is established. Index-names in the called and calling program always

refer to separate indices.

(7) The CALL statement may appear anywhere within a segmented program.
The implementor must provide all controls necessary to insure that the proper

logic flow is maintained. Therefore, when a CALL statement appears in a sec-
tion with a segment-number greater than or equal to 50, that segment is in

its last used state when the EXIT PROGRAM statement returns control to the

calling program.

XII- 6

Inter- Pro gram Comnvni cation - CAI^CEL

3.3 THE CANCEL STATEMENT

3.3.1 Function !

The CANCEL statement releases the memory areas occupied by the referred to
program.

3.3.2 General Format

, identifier-2

, literal-2 J * * *

3.3. 3 Syntax Rules

(1) Literal-1, literal-2, must each be a nonnumeric literal.

(2) Identifier-1, identif ier-2, must each be defined as an alpha-
numeric data item such that its value can be a program name.

3.3.4 General Rules

(1) Subsequent to the execution of a CANCEL statement, the program referred
to therein ceases to have any logical relationship to the run unit in which
the CANCEL statement appears. A subsequently executed CALL statement naming
the same program will result in that program being initiated in its initial
state. The memory areas associated with the named programs are released so

as to be made available for disposition by the operating system.

(2) A program named in the CANCEL statement must not refer to any program
that has been called and has not yet executed an EXIT PROGRAM statement.

(3) A logical relationship to a cancelled subprogram is established only
by execution of a subsequent CALL statement.

(4) A called program is cancelled either by being referred to as
the operand of a CANCEL statement or by the termination of the run unit of
which the program is a member.

(5) No action is taken when a CANCEL statement is executed naming a pro-
gram that has not been called in this run unit or has been called and is at

present cancelled. Control passes to the next statement.

CANCEL
identi
literal

Ifier-l] al-1 3

XII- 7

Inter-Program Cormunioation - EXIT PROGRAM

3.4 THE EXIT PROGRAM STATEMENT

3.4.1 Function

The EXIT PROGRAM statement marks the logical end of a called program.

3.4.2 General Format

EXIT PROGRAM.

3.4.3 Syntax Rules

(1) The EXIT PROGRAM statement must appear in a sentence by itself.

(2) The EXIT PROGRAM sentence must be the only sentence in the paragraph.

3.4.4 General Rules

(1) An execution of an EXIT PROGRAM statement in a called program causes

control to be passed to the calling program. Execution of an EXIT PROGRAM
statement in a program which is not called behaves as if the statement were

an EXIT statement. (See page 11-64, The EXIT Statement.)

XII-8

Communication - Introduction

1. INTRODUCTION TO THE COMMUNICATION MODULE

1.1 FUNCTION

The Communication module provides the ability to access, process, and

create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote communication devices.

1.2 LEVEL CHARACTERISTICS

Communication Level 1 does not provide the full COBOL facility for the CD
entry as specified in the formats for this module. In the Procedure Division,
Level 1 provides limited capabilities for the ENABLE, DISABLE, RECEIVE and
SEND statements, as specified in the formats of this module. There is also

a provision for determining the number of messages in an input queue.

Communication Level 2 provides full facility for the CD entry as specified
in the formats of this module. Within the Procedure Division, full capabilities
are provided for the ENABLE, DISABLE, RECEIVE and SEND statements, as specified
in the formats for this module. The additional features available in Level 2

include: partial messages, segmented messages, multiple destination message
processing, and program invocation by the MCS as specified by the. INITIAL CD.

XIII-1

Communi cation - Cotwrunication Section

2. DATA DIVISION IN THE COMMUNICATION MODULE

2.1 COMMUNICATION SECTION

In a COBOL program the communication description entries (CD) represent the
highest level of organization in the Communication Section. The Communication
Section header is followed by a communication description entry consisting of

a level indicator (CD), a data-name and a series of independent clauses. These
clauses indicate the queues and sub-queues, the message date and time, the
source, the text length, the status and end keys, and message count of input.
These clauses specify the destination count, the text length, the status and
error keys, and destinations for output. The entry itself is terminated by a

period. These record areas may be implicitly redefined by user-specified
record description entries following the various communication description
clauses .

XIII-2

Cormunication - CD Entry Skeleton

2.2 THE COMMUNICATION DESCRIPTION - COMPLETE ENTRY SKELETON

2.2.1 Function

The communication description specifies the interface area between the MCS
and a COBOL program.

2.2.2 General Format

Format 1

CD cd-name;

FOR
[initial]

INPUT

[; SYMBOLIC QUEUE IS data-name-l]

SYMBOLIC SUB-QUEUE- 1 IS data-name-2]

SYMBOLIC SUB-QUEUE-2 IS data-name-S]

SYMBOLIC SUB- QUEUE- 3 IS data-name-4]

MESSAGE DATE IS data-name-5]

MESSAGE TIME IS data-name-6]

SYMBOLIC SOURCE IS data-name-?]

TEXT LENGTH IS data-name- 8]

END KEY IS data-name-9]

STATUS KEY IS data-name- lo]

MESSAGE COUNT IS data-name-l l]]

data-name-l, data-name-2, data-name-11 J

Format 2

CD cd-name; FOR OUTPUT

[; DESTINATION COUNT° IS data-name-l]

[; TEXT LENGTH IS data-name-2]

[; STATUS KEY IS data-name-s]

[; DESTINATION TABLE OCCURS integer-2 TIMES

[; INDEXED BY index-name-1 [, index-name-2] • • •

[; ERROR KEY IS data-name-4]

[; SYMBOLIC DESTINATION IS data-name-5] .

1]

XI I 1-3

Communication - CD Entry Skeleton

2.2.3 Syntax Rules

FORMAT 1

(1) A CD must appear only in the Communication Section.

(2) Within a single program, the INITIAL clause may be specified in only
one CD. The INITIAL clause must not be used in a program that specifies the

USING phrase of the Procedure Division Header. (See page XII-4, The Procedure
Division Header.)

(3) Except for the INITIAL clause, the optional clauses may be written
in any order.

(4) If neither option in the format is specified, a level 01 data descrip-
tion entry must follow the CD description entry. Either option may be followed

by a level 01 data description entry.

(5) For each input CD, a record area of 87 contiguous standard data format
characters is allocated. This record area is defined to the MCS as follows :

a. The SYMBOLIC QUEUE clause defines data-name- 1 as the name of an

elementary alphanumeric data item of 12 characters occupying positions 1-12
in the record.

b. The SYMBOLIC SUB-QUEUE- 1 clause defines data-name-2 as the name
of an elementary alphanumeric data item of 12 characters occupying positions
13-24 in the record.

c. The SYMBOLIC SUB-QUEUE- 2 clause defines data-name-3 as the name of
an elementary alphanumeric data item of 12 characters occupying positions
25-36 in the record.

d. The SYMBOLIC SUB-QUEUE-3 clause defines data-name-4 as the name of
an elementary alphanumeric data item of 12 characters occupying positions
37-48 in the record.

e. The MESSAGE DATE clause defines data-name-5 as the name of a data
item whose implicit description is that of an integer of 6 digits without an

operational sign occupying character positions 49-54 in the record.

f. The MESSAGE. TIME clause defines data-name-6 as the name of a data
item whose implicit description is that of an integer of 8 digits without an

operational sign occupying character positions 55-62 in the record.

g. The SYMBOLIC SOURCE clause defines data-name-7 as the name of an

elementary alphanumeric data item of 12 characters occupying positions 63-74
in the record.

h. The TEXT LENGTH clause defines data-name-8 as the name of an
elementary data item whose implicit description is that of an integer of 4

digits without an operational sign occupying character positions 75-78 in the
record .

XIII-4

Communication - CD Entry Skeleton

i. The END KEY clause defines data-name-9 as the name of an elementary
alphanumeric data item of 1 character occupying position 79 in the record.

j. The STATUS KEY clause defines data-name-10 as the name of an

elementary alphanumeric data item of 2 characters occupying positions 80-81
in the record.

k. The MESSAGE COUNT clause defines data-name-11 as the name of an
elementary data item whose implicit description is that of an integer of 6

digits without an operational sign occupying character positions 82-87 in
the record.

The second option may be used to replace the above clauses by a series

of data-names which, taken in order, correspond to the data-names defined by
these clauses.

Use of either option results in a record whose implicit description
is equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-0.

02
data-

■name- 1 PICTURE X(12) . SYMBOLIC QUEUE

02
data-

■name- 2 PICTURE X(12) .
SYMBOLIC SUB-QUEUE-

1
02

data-
■name- 3 PICTURE .X(12) .

SYMBOLIC SUB-QUEUE-
2

02
data-

-name- 4 PICTURE X(12) .
. SYMBOLIC SUB-QUEUE-

3
02

data-
-name- 5 PICTURE 9(06) . MESSAGE DATE

02
data-

■name- 6 PICTURE 9(08) . MESSAGE TIME
02

data-
-name- 7 PICTURE X(12) . SYMBOLIC SOURCE

02
data-

-name- 8 PICTURE 9(04) . TEXT LENGTH
02

data-
•name- 9 PICTURE X. END KEY

02
data-

•name- 10 PICTURE XX. STATUS KEY
02

data-
-name-

11 PICTURE 9(06). MESSAGE COUNT

NOTE: In the above, the information under 'COMMENT' is for
clarification and is not part of the description.

(6) Record description entries following an input CD implicitly redefine
this record and must describe a record of exactly 87 characters. Multiple

redefinitions of this record are permitted; however, only the first redefini-
tion may contain VALUE clauses. However, the MCS will always reference the

record according to the data descriptions defined in syntax rule 5.

(7) Data-name-1, data-name-2, data-name-11 must be unique V7ithin the
CD. Within this series, any data-name may be replaced by the reserved word
FILLER.

FORMAT 2

(8) A CD must appear only in the Communication Section.

(9) If none of the optional clauses of the CD is specified, a level 01 data

description entry must follow the CD description entry.

XIII-5

Communication - CD Entry Skeleton

(10) For each output CD, a record area of contiguous standard data format
characters is allocated according to the following formula: (10 plus 13 times

integer-2) .

a. The DESTINATION COUNT clause defines data-name- 1 as the name of a v

data item whose implicit description is that of an integer without an opera-
tional sign occupying character positions 1-4 in the record.

b. The TEXT LENGTH clause defines data-name-2 as the name of an
elementary data item whose implicit description is that of an integer of 4

digits without an operational sign occupying character positions 5-8 in the
record.

c. The STATUS KEY clause defines data-name-3 to be an elementary

alphanumeric data item of 2 characters occupying positions 9-10 in the record.

d. Character positions 11-23 and every set of 13 characters thereafter
will form table items of the following description:

1) The ERROR KEY clause defines data-name-4 as the name of an
elementary alphanumeric data item of 1 character.

2) The SYMBOLIC DESTINATION clause defines data-name-5 as the
name of an elementary alphanumeric data item of 12 characters.

Use of the above clauses results in a record whose implicit

description is equivalent to the following:

IMPLICIT DESCRIPTION COMMENT

01 data-name-O.

02 data-name-1 PICTURE 9 (04) .

02 data-name-2 PICTURE 9 (04) .
02 data-narae-3 PICTURE XX.

02 data-name OCCURS integer-2 TIMES,
03
03

data-name-4

data-name-5

PICTURE X.
PICTURE X(12) .

DESTIMATION COUNT
TEXT LENGTH

STATUS KEY
DESTIMATION TABLE

ERROR KEY
SYMBOLIC DESTINATION

NOTE: In the above, the information under 'COMMENT' is for
clarification and is not part of the description.

(11) Record descriptions following an output CD implicitly redefine this
record. Multiple redefinitions of this record are permitted; however, only the

first redefinition may contain VALUE clauses. However, the MCS will always re-
ference the record according to the data descriptions defined in syntax rule 10.

(12) Data-name-1, data-name-2, data-name-5 must be unique within a CD.

(13) If the DESTINATION TABLE OCCURS clause is not specified, one (1) ERROR
KEY and one (1) SYMBOLIC DESTINATION area is assumed. In this case, neither

subscripting nor indexing is permitted when referencing these data items.

(14) If the DESTINATION TABLE OCCURS clause is specified, data-name-4 and
data-name-5 may only be referred to by subscripting or indexing.

XIII-6

Corrmuniaation - CD Entry Skeleton

(15) In Level 1, the value of the data item referenced by data-naine-l and
integer-2 must be 1. In Level 2, there is no restriction on the value of the
data item referenced by data-name- 1 and integer-2.

2.2.4 General Rules

FORMAT 1

(1) The input CD information constitutes the communication between the MCS

and the program as information about the message being handled. This informa-
tion does not come from the terminal as part of the message.

(2) The contents of the data items referenced by data-name-2, data-name-3,
and data-name-4, when not being used must contain spaces.

(3) The data items referenced by data-name-1, data-name-2, data-name-3,

and data-name-4 contain symbolic names designating queues, sub-queues, ...
respectively. All symbolic names must follow the rules for the formation

of system-names, and must have been previously defined to the MCS.

(4) A RECEIVE statement causes the serial return of the 'next' mess age | or [
a portion of a message from the queue as specified by the entries in the CD.

If during the execution of a RECEIVE statement, a message from a more

specific source is needed, the contents of the data item referenced by data-

name-1 can be made more specific by the use of the contents of the data items
referenced by data-name-2, data-name-3, and in turn data-name-4. When a
given level of the queue structure is specified, all higher levels must also
be specified.

If less than all the levels of the queue hierardiy are specified, the

MCS determines the 'next' message or portion of a message to be accessed.

After the execution of a RECEIVE statement, the contents of the data

items referenced by data-name-1 through data-narae-4 will contain the symbolic
names of all the levels of the queue structure.

(5) Whenever a program is scheduled by the MCS to process a message, the
symbolic names of the queue structure that demanded this activity will be

placed in the data items referenced by data-name-1 through data-name-4 of the
CD associated with the INITIAL clause as applicable. In all other cases, the

contents of the data itpms referenced by data-name-1 through data-name-4 of
the CD associated with the INITIAL clause are initialized to spaces.

The symbolic names are inserted or the initialization to spaces is

completed prior to the execution of the first Procedure Division statement.

The execution of a subsequent RECEIVE statement naming the same

contents of the data items referenced by data-name-1 through data-name-4 will
return the actual message that caused the program to be scheduled. Only at
that time will the remainder of the CD be updated.

(6) If the MCS attempts to schedule a program lacking an INITIAL clause,
the results are undefined.

XIII-7

Cormuniaation - CD Entry Skeleton

(7) Data-name-5 has the format 'YYMMDD' (year, month, day). Its contents
represent the date on which the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-5 are only
updated by the MCS as part of the execution of a RECEIVE statement.

(8) The contents of data-name-6 has the format 'HHMMSSTT' (hours, minutes,
second, hundredths of a second) and its contents represent the time at which
the MCS recognizes that the message is complete.

The contents of the data item referenced by data-name-6 are only
updated by the MCS as part of the execution of the RECEIVE statement.

(9) During the execution of a RECEIVE statement, the MCS provides, in the

data item referenced by data-name-7, the symbolic name of the communications
terminal that is the source of the message being transferred. However, if the

symbolic name of the communication terminal is not known to the MCS, the

contents of the data item referenced by data-name-7 will contain spaces.

(10) The MCS indicates via the contents of the data item referenced by

data-name-8 the number of character positions filled as a result of the

execution of the RECEIVE statement. (See page XIII-17.)

(11) The contents of the data item referenced by data-name-9 are set only
by the MCS as part of the execution of a RECEIVE statement according to the
following rules :

a. \«Jhen the RECEIVE MESSAGE phrase is specified, then:

1. If an end of group has been detected, the contents of

the data item referenced by data-name-9 are set to 3;

2. If an end of message has been detected, the contents of the

data item referenced by data-name-9 are set to 2;

3. If less than a message is transferred, the contents of the

data item referenced by data-name-9 are set to 0.

b. When the RECEIVE SEGMENT phrase is specified, then:

1. If an end of group has been detected, the contents of

the data item referenced by data-name-9 are set to 3;

2. If an end of message has been detected, the contents of the

data item referenced by data-name-9 are set to 2;

3. If an end of segment has been detected, the contents of the

data item referenced by data-name-9 are set to 1;

A. If less than a message segment is transferred, the contents

of the data item referenced by data-narae-9 are set to 0.

c. When more than one of the above conditions is satisfied simultan-
eously, the rule first satisfied in the order listed determines the contents

of the data item referenced by data-name-9.

XIII-8

Comnnmi cation - CD Entry Skeleton

(12) The contents of the data item referenced by data-name- 10 indicate the
status condition of the previously executed RECEIVE, ACCEPT MESSAGE COUNT,
ENABLE INPUT, or DISABLE INPUT statements.

The actual association between the contents of the data item referenced

by data-name- 10 and the status condition itself is defined in the table on page
XIII-10.

(13) The contents of the data item referenced by data-narae-11 indicate the
number of messages that exist in a queue, sub-queue-1, The MCS updates
the contents of the data item referenced by data-name-11 only as part of tne
execution of an ACCEPT statement with the COUNT phrase.

FORMAT 2

(14) The nature of the output CD information is such that it is not sent
to the terminal, but constitutes the communication between the program and the

MCS as information about the message being handled.

(15) During the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT

statement, the contents of the data item referenced by data-name- 1 will indicate
to the MCS the number of symbolic destinations that are to be used, from the

area referenced by data-name-5.

The MCS finds the first symbolic destination in the first occurrence

of . the area referenced by data-name-5, the second symbolic destination in the

second occurrence of the area referenced by data-name-5 up to and includ-
ing the occurrence of the area referenced by data-name-5 indicated by the

contents of data-name- 1.

If during the execution of a SEND, ENABLE OUTPUT, or DISABLE OUTPUT

statement the value of the data item referenced by data-name- 1 is outside the

range of 1 through integer-2, an error condition is indicated and the execu-
tion of the SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement is terminated.

(16) It is the responsibility of the user to insure that the value of the

data item referenced by data-name-1 is valid at the time of execution of the
SEND, ENABLE OUTPUT, or DISABLE OUTPUT statement.

(17) As part of the execution of a SEND statement, the MCS will interpret

the contents of the data item referenced by data-name-2 to be the user's
indication of the number of leftmost character positions of the data item

referenced by the associated SEND identifier from which data is to be trans-
ferred. (See page XIII-20.)

(18) Each occurrence of the data item referenced by data-name-5 contains a
symbolic destination previously known to the MCS. These symbolic destination

names must follow the rules for the formation of system-names.

(19) The contents of the data item referenced by data-name-3 indicate the
status condition of the previously executed SEND, ENABLE OUTPUT, or DISABLE
OUTPUT statement.

The actual association between the contents of the data item referenced

by data-name-3 and the status condition itself is defined in the table on page
XIII-10.

XIII-9

Coimuni cation - CD Entry Skeleton

(20) If, during the execution of a SEND, an ENABLE OUTPUT, or a DISABLE
OUTPUT statement, the MCS determines that any specified destination is unknown,

the contents of the data item referenced by data-name-3 and all occurrences of
the data items referenced by data-name-4 are updated.

The contents of the data item referenced by data-name-A when equal to
1 indicate that the associated value in the area referenced by data-name-5 has
not been previously defined to the MCS. Otherwise, the contents of the data

item referenced by data-name-4 are set to zero (0) .

ALL FORMATS

(21) For Level 1, the table below indicates the possible contents of the

data items referenced by data-name- 10 for Format 1 and by data-name-3 for

Format 2 at the completion of each statement shown. An 'X' on a line in a
statement column indicates that the associated code shown for that line is

possible for that statement. ,

R
E
C
E
I
V
E

SEND

A
C
C
E
P
T

M
E
S
S
A
G
E

C
O
U
N
T

E
N
A
B
L
E

I
N
P
U
T

(
w
i
t
h
o
u
t

T
E
R
M
I
N
A
L
)

E
N
A
B
L
E

O
U
T
P
U
T
 D
I
S
A
B
L
E

I
N
P
U
T

(
w
i
t
h
o
u
t

TER>IINAL)

D
I
S
A
B
L
E

O
U
T
P
U
T

S
T
A
T
U
S

K
E
Y

 C
OD
E

• X X X X X X X GO No error detected. Action completed.

X 10 Destination is disabled. Action completed.

X X X
20 Destination unknown. No action taken for

unkno^m destination. Data-name-4 (ERROR KEY)
indicates unknown.

X X X X 20 One or more queues or sub-queues unknown.
No action taken.

X X X
30

Content of DESTINATION COUNT invalid.

No action taken.

X X X X 40 Password invalid. No enabling/disabling
action taken.

X
50

Character count greater than length of

sending field. No action taken.

Communication Status Key Condition in Level 1

XIII-IO

Communication - CD Entry Skeleton

(22) For Level 2, the table below indicates the possible contents of the

data items referenced by data-name- 10 for Format 1 and by data-name-3 for

Format 2 at the completion of each statement shown. An 'X' on a line in a
statement column indicates that the associated code shown for that line is

possible for that statement.

R
E
C
E
I
V
E

SEND

A
C
C
E
P
T

M
E
S
S
A
G
E

C
O
U
N
T

E
N
A
B
L
E

IN
PU

T

(
w
i
t
h
o
u
t

 T
E
R
M
I
N
A
L
)

E
N
A
B
L
E

I
N
P
U
T

1

(
w
i
t
h

T
E
R
M
I
N
A
L
)

E
N
A
B
L
E

 O
U
T
P
U
T

D
I
S
A
B
L
E

I
N
P
U
T

(
w
i
t
h
o
u
t

 T
E
R
M
I
N
A
L
)

D
I
S
A
B
L
E

IN
PU
T

(
w
i
t
h

T
E
R
M
I
N
A
L
)

D
I
S
A
B
L
E

O
U
T
P
U
T

S
T
A
T
U
S

K
E
Y

 C
OD
E

X X X X X X X X X
GO

No error detected. Action completed.

X 10 One or more destinations are

disabled. Action completed.

X X X 20

One or more destinations unknown.

Action completed for known destina-
tions. No action taken for unkno^m

destinations. Data-name-4 (ERROR
KFY^ nndi rates known or unknown.

X X X X
20

One or more queues or sub-queues
unknown. No action taken.

X X 20 The source is unknown. No action
taken .

X X X
30

Content of DESTINATION COUNT
invalid. No action taken.

X X X X X X 40 Password invalid. No

enabling/disabling action taken.

X 50 Character count greater than length

of sending field. No action taken.

X
60 Partial segment with either zero

character count or no sending area

specified. No action taken.

Communication Status Key Condition in Level 2

XIII-11

Cormunioation - ACCEPT MESSAGE COUNT

3. PROCEDURE DIVISION IN THE COMMUNICATION MODULE

3.1 THE ACCEPT MESSAGE COUNT STATEMENT

3.1.1 Function

The ACCEPT MESSAGE COUNT statement causes the number of messages in a
queue to be made available.

3.1.2 General Format

ACCEPT cd~name MESSAGE COUNT

3.1.3 Syntax Rules

(1) Cd-name must refei^ence an input CD.

3.1.4 General Rules

(1) The ACCEPT MESSAGE COUNT statement causes the MESSAGE COUNT field

specified for cd-name to be updated to indicate the number of messages that
exist in a queue, sub-queue- 1,

(2) Upon execution of the ACCEPT MESSAGE COUNT statement, the contents of
the area specified by a communication description entry must contain at least
the name of the symbolic queue to be tested. Testing the condition causes the

contents of the data items referenced by data-name- 10 (STATUS KEY) and
data-name-11 (MESSAGE COUNT) of the area associated with the communication

entry to be appropriately updated. (See page XIII-3, The Communication
Description - Complete Entry Skeleton.)

XIII-12

Communication - DISABLE

3.2 THE DISABLE STATEMENT

3.2.1 Function

The DISABLE statement notifies the MCS to inhibit data transfer between

specified output queues and destinations for output or between specified
sources and input queues for input.

3.2.2 General Format

(INPUT I fTERMINALl | ̂ ^^^^^^ ̂ ^^^^ (identifier-! ^ ^ I cd-name WITH KEY DISABLE

I OUTPUT
literal-1

3.2.3 Syntax Rules

(1) Cd-name must reference an input CD when the INPUT phrase is specified.

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified,

(3) Literal-1 or the contents of the data item referenced by identifier-1
must be defined as alphanumeric.

3.2.4 General Rules

■ (1) The DISABLE statement provides a logical disconnection between the MCS
and the specified sources or destinations. IVlien this logical disconnection is

already in existence, or is to be handled by some other means external to this
program, the DISABLE statement is not required in this program. The logical
path for the transfer of data between the COBOL programs and the MCS is not
affected by the DISABLE statement.

(2) When the INPUT phrase with the optional word TERMINAL is specified,

the logical path between the source and all queues and sub-queues is deacti-
vated. Only the contents of the data item referenced by data— name— 7 (SYMBOLIC

SOURCE) of the area referenced by cd-name are meaningful.

(3) When the INPUT phrasefwithout the optional word TERMINAL| is specified.

the logical paths for all of the sources associated with the queues and sub-
queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) through
data-name-A (SYMBOLIC SUB-QUEUE-3) of the area referenced by cd-name are
deactivated.

(4) When the OUTPUT phrase "is specified, the logical path for destination.
or the logical paths for all destinations,] specified by the contents of the

data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer-
enced by cd-name are deactivated.

(5) Literal-1 or the contents of the data-name referenced by identifier-1
will be matched with a password built into the system. The DISABLE statement

will be honored only if literal-1 or the contents of the data item referenced
by identifier-1 matches the system password. When literal-1 or the contents
of the data item referenced by identifier-1 do not match the system password,

the value of the STATUS KEY item in the area referenced by cd-name is updated.

XIII-13

Communication - DISABLE

The MCS must be capable of handling a password of from one to ten
characters inclusive.

(6) The MCS will insure that the execution of a DISABLE statement will
cause the logical disconnection at the earliest time the source or destination
is inactive. The execution of the DISABLE statement will never cause the

remaining portion of the message to be terminated during transmission to or
from a terminal.

XITI-14

Communication - ENABLE

3.3 THE ENABLE STATEMENT

3.3.1 Function

The ENABLE statement notifies the MCS to allow data transfer between

specified output queues and destinations for output or between specified
sources and input queues for input.

3.3.2 General Format

(INPUT
ENABLE \

OUTPUT

[TERMINAL]
i cd-name WITH KEY identifier- 1

literal-1

3.3.3 Syntax Rules

(1) Cd-name must reference an input CD when the INPUT phrase is specified.

(2) Cd-name must reference an output CD when the OUTPUT phrase is specified,

(3) Literal-1 or the contents of the data item referenced by identifier-1
must be defined as alphanumeric.

3.3.4 General Rules

(1) The ENABLE statement provides a logical connection between the MCS and
the specified sources or destinations. When this logical connection is already
in existence, or is to be handled by some other means external to this program,
the ENABLE statement is not required in this program. The logical path for the
transfer of data between the COBOL programs and the MCS is not affected by the
ENABLE statement.

(2) When the INPUT phrase with the optional word TERMINAL is specified,

the logical path between the source and all associated queues and sub-queues
which are already enabled is activated. Only the conterats of the data item

referenced by data-name-7 (SYMBOLIC SOURCE) of the area referenced by cd-name
are meaningful to the MCS.

(3) When the INPUT phrase [without the optional word TERMINAL! is specified,

the logical paths for all of the sources associated wittt the queue and sub-
queues specified by the contents of data-name-1 (SYMBOLIC QUEUE) through
data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area reference;d by cd-name are
activated.

(A) VJhen the OUTPUT phrase is specified, the logical path for destination,
or the logical paths for all destinations, specified by the contents of the

data item referenced by data-name-5 (SYMBOLIC DESTINATION) of the area refer-
enced by cd-name are activated.

(5) Literal-1 or the contents of the data item referenced by identifier-1

will be matched with a password built into the system. 'The ENABLE statement
will be honored only if literal-1 or the contents of the data item referenced
by identifier-1 match the system password. When literal— 1 or the contents of

XIII-15

Cormrum cation - ENABLE

the data item referenced by identifier-1 do not match the system password,
the value of the STATUS KEY item in the area referenced by cd-name is upda

The MCS must be capable of handling a password of from one to ten characters inclusive.

XIII- 16

Communication - RECEIVE

3.4 THE RECEIVE STATEMENT

3.4.1 Function

The RECEIVE statement makes available to the COBOL program a message,
message segment, or a portion of a message or segnient,{ and pertinent informa
tion about that data from a queue maintained by the Message Control System.
The RECEIVE statement allows for a specific imperative statement when no
data is available.

3.4.2 General Format

RECEIVE cd-name f MESSAGE, ̂ ^^^ identifier-1 f; NO DATA imperative-statementl
' SEGMENT ^

3.4.3 Syntax Rules

(1) Cd-name must reference an input CD.

3.4.4 General Rules

(1) The contents of the data items specified by data-name-1 (SYMBOLIC
QUEUE) through data-name-4 (SYMBOLIC SUB-QUEUE-3) of the area referenced by
cd-name designate the queue structure containing the message. (See page
XIII-3, The CD Entry.)

(2) The message , I message segment, or portion of a message or segment is

transferred to the receiving character positions of the area referenced by

identifier-1 aligned to the left without space fill.

(3) When during the execution of a RECEIVE statement, the MCS makes data

available in the data item referenced by identifier-1, control is transferred
to the next executable statement, whether or not the NO DATA phrase is
specified.

(4) When, during the execution of a RECEIVE statement, the MCS does not

make data available in the data item referenced by identifier-1:

a. If the NO DATA phrase is specified, the RECEIVE operation is
terminated with the indication that action is complete (see general rule 5) ,

and the imperative statement in the NO DATA phrase is executed.

b. If the NO DATA phrase is not specified, execution of the object
program is suspended until data is made available in the data item referenced

by identifier-1.

c. If one or more queues or sub-queues is unknown to the MCS, control
passes to the next executable statement, whether or not the NO DATA phrase is

specified. (See page XIII-10 and XIII-11, Communication Status Key Condition.)

(5) The data items identified by the input CD are appropriately updated
by the Message Control System at each execution of a RECEIVE statement. (See

page XIII-3, The CD Entry.)

XIII-17

Communication - RECEIVE

(6) A single execution of a RECEIVE statement never returns to the data

item referenced by identifler-1 more than a single message (when the MESSAGE
phrase is used) | or a single segment (when the SEGMENT phrase is used) . How-
ever, the MCS does not pass any portion of a message to the object program
until the entire message is available in the input queue, even if the SEGMENT
phrase of the RECEIVE statement is specified.

(7) When the MESSAGE phrase is used, end of segment indicators are ignored,
and the following rules apply to the data transfer:

a. If a message is the same size as the area referenced by identif ier-1 ,
the message is stored in the area referenced by identif ier-1 .

b. If a message size is less than the area referenced by identif ier-1 ,
the message is aligned to the leftmost character position of the area refer-

enced by identifier-1 with no space fill.
1

c. If a message size is greater than the area referenced by identi-

fier-1, the message fills the area referenced by identifier-1 left to right
starting with the leftmost character of the message. In Level 1, the dispo-
sition of the remainder of the message is undefined, j In Level 2 , the remain-

der of the message can be transferred to the area referenced by identifier-1
with subsequent RECEIVE statements referring to the same queue, sub-queue
The remainder of the message, for the purposes of applying rules 7a, 7b, and
7c, is treated as a new message.

(8) When the SEGMENT phrase is used, the following rules apply:

a. If a segment is the same size as the area referenced by identifier-1,
the segment is stored in the area referenced by identifier-1.

b. If the segment size is less than the area referenced by identifier-1,
the segment is aligned to the leftmost character position of the area referenced

by identifier-1 with no space fill.

c. If a segment size is greater than the area referenced by identifier-1,
the segment fills the area referenced by identifier-1 left to right starting
with the leftmost character of the segment. The remainder of the segment can

be transferred to the area referenced by identifier-1 with subsequent RECEIVE
statements calling out the same queue, sub-queue The remainder of the
segment, for the purposes of applying rules 8a, 8b, and 8c, is treated as a
new segment.

d. If the text to be accessed by the RECEIVE statement has associated

with it an end of message indicator or end of group indicator, the existence

of an end of segment indicator associated with the test is implied and the
text is treated as a message segment according to general rule 8.

(9) Once the execution of a RECEIVE statement has returned a portion of

a message, only subsequent execution of RECEIVE statements in that run unit
can cause the remaining portion of the message to be returned.

XIII-18

Comniunioation - RECEIVE

(10) After the execution of a STOP RUN

remaining portion of a message partically

by the implementor. (See page 11-85, The

statement, the disposition of a
obtained in that run unit is defined
STOP Statement.)

XIII-19

Cormuni cation - SEND

3.5 THE SEND STATEMENT

3.5.1 Function

The SEND statement causes a message, ja message segment, or a portion of a
message or segment [to be released to onejor more| output queues maintained by
the Message Control System.

3.5.2 General Format

Format 1

SEND cd-name FROM identifier-1

Format 2

I

SEND cd-name f FROM identif ier-l]

WITH identifier-2
WITH ESI
WITH EMI
WITH EG!

(ffidentifier-S) [LINE 1'

iHir] ADVANCING {iV
nteger j [lINEsJ f mnemonic-name^
I PAGE I

3.5.3 Syntax Rules

(1) Cd-name must reference an output CD.

(2) Identifier-2 must reference a one character integer without an
operational sign.

(3) When identif ier-3 is used in the ADVANCING phrase, it must be the
name of an elementary integer item.

(4) When the mnemonic-name phrase is used, the name is identified with a

particular feature specified by the implementor. The mnemonic-name is defined

in the SPECIAL-NAMES paragraph of the Environment Division.

(5) Integer or the value of the data item referenced by identifier-3 may
be zero.

3.5.4 General Rules

ALL FORMATS

(1) When a receiving communication device (printer, display screen, card
punch, etc.) is oriented to a fixed line size:

a. Each message or message segment will begin at the leftmost
character position of the physical line.

XIII-20

Communication - SEND

b. A message |or message segment| that is smaller than the physical

line size is released so as to appear space-filled to the right.

c. Excess characters of a message | or message segment! will not be
truncated. Characters will be packed to a size equal to that of the physical
line and then outputted to the device. The process continues on the next line
with the excess characters.

(2) When a receiving communication device (paper tape punch, another

computer, etc.) is oriented to handle variable length messages, each message
or message segment Iwill begin on the next available character position of the
communications device.

(3) As part of the execution of a SEND statement, the MCS will interpret

the contents of the data item referenced by data-narae-2 (TEXT LENGTH) of the

area referenced by cd-name to be the user's indication of the number of left-
most character positions of the data item referenced by identifier-1 from

which data is to be transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH)

of the area referenced by cd-name are zero, no characters of the data item
referenced by identifier-1 are transferred.

If the contents of the data item referenced by data-name-2 (TEXT LENGTH)

of the area referenced by cd-name are outside the range of zero through the
size of the data item referenced by identifier-1 inclusive, an error is

indicated by the value of the data item referenced by data-name-3 (STATUS KEY)

of the area referenced by cd-name, and no data is transferred. (See pages
XIII-10 and XIII-11, Communication Status Key Condition.)

(4) As part of the execution of a SEND statement, the contents of the data

item referenced by data-name-3 (STATUS KEY) of the area referenced by cd-name
is updated by the MCS. (See page XIII-3, The CD Entry.)

(5) The effect of having special control characters within the contents

of the data item referenced by identifier-1 is undefined.

(6) A single execution of a SEND statement for Format 1 releases only a

single portion of a message or of a message segment to the MCS.

A single execution of a SEND statement of Format 2 never releases to
as indicated the MCS more than a single message [or a single message segment

by the contents of the data item referenced by identifier-2 or
by the speci- fied indicator |ESI, jEMI or EGI.

However, the MCS will not transmit any portion of a message to a

communications device until the entire message is placed in the output queue.

(7) During the execution of the run unit, the disposition of a portion of
a message not terminated by an EMI or EGI is undefined. However, the message
does not logically exist for the MCS and hence cannot be sent to a destination,

After the execution of a STOP RUN statement, any portion of a message
transferred from the run unit via a SEND statement, but not terminated by an

EMI or EGI, is purged from the system. Thus no portion of the message is sent,

XIII-21

Communication - SEND

(8) Onee the execution of a SEND statement has released a portion of a
message to the MCS, only subsequent execution of SEND statements in the same

run unit can cause the remaining portion of the message to be released.

FORMAT 2

(9) The contents of the data item referenced by identifier-2 indicate that
the contents of the data item referenced by identifier-1 are to have associated
with it an end of segment indicator, an end of message indicator or an end of
transmission indicator according to the following schedule:

If the content of the
data item referenced

by identifier-2 is

then the contents of
data item referenced

by identifier-1 have
associated with it

which means

'0'
!
no indicator no indicator

'1' ESI
an end of segment indicator

» 2 ' EMI
an end of message .indicator

'3' EGI
an end of group indicator

Any character other than '1', '2', or '3' will be interpreted as '0'.

If the content of the data item referenced by identifier-2 is other

than 'I's '2', or '3', and identifier-1 is not specified, then an error is
indicated by the value in the data item referenced by data-name-3 (STATUS KEY)
of the area referenced by cd-name, and no data is transferred.

(10) The ESI indicates to the MCS that the message segment is complete.
The EMI indicates to the MCS that the message is complete.

The EGI indicates to the MCS that the group of messages is complete,
The implementor will specify the interpretation that is given to the EGI by
the MCS.

The MCS will recognize these indications and establish whatever is

necessary to maintain group, message,! and segment control.

(11) The hierarchy of ending indicators is EGI, EMI ,[and ESI.| An EGI need
not be preceded by an | ESI or I EMI. | An EMI need not be preceded by an ESI

(12) The ADVANCING phrase allows control of the vertical positioning of
each message or message segment on a communication device where vertical

positioning is applicable. If vertical positioning is not applicable on the
device, the MCS will ignore the vertical positioning specified or implied.

(13) If identifier-2 is specified and the content of the data item refer-
enced by identifier-2 is zero, the ADVANCING phrase is ignored by the MCS.

XIII-22

Communication - SEND

(14) On a device where vertical positioning is applicable and the ADVANCING

phrase is not specified, automatic advancing will be provided by the implemen-
tor to act as if the user had specified AFTER ADVANCING 1 LINE.

(15) If the ADVANCING phrase is implicitly or explicitly specified and
vertical positioning is applicable, the following rules apply:

a. If identifier-3 or integer is specified, characters transmitted
to the communication device will be repositioned vertically downward the
number of lines equal to the value associated with the data item referenced by

identifier-3 or integer.

b. If mnemonic-name is specified, characters transmitted to the
communication device will be positioned according to the rules specified by
the implementor for that conmunication device.

c. If the BEFORE phrase is used, the message |or message segment is
represented on the communication device before vertical repositioning
according to general rules 15a and 15b above.

d. If the AFTER phrase is used, the message jor message segmentjis

represented on the communication device after vertical repositioning accord-
ing to general rules 15a and 15b above.

e. If PAGE is specified, characters transmitted to the communication
device will be represented on the device before or after (depending upon the

phrase used) the device is repositioned to the next page. If PAGE is specified
but page has no meaning in conjunction with a specific device, then advancing
will be provided by the implementor to act as if the user had specified BEFORE

or AFTER .(depending upon the phrase used) ADVANCING 1 LINE.

XIII-23

History of COBOL

1. APPENDIX A: THE HISTORY OF COBOL

1.1 ORGANIZATION OF COBOL EFFORT

On May 28 and 29, 1959, a meeting was held in the Pentaj^on for the purpose
of considering both the desirability and the feasibility of establishing a

comiuon language for the programming of electronic computers for business- type
applications. Representatives from users, both in private industry and in
government, computer manufacturers, and other interested parties were present.
The group agreed that the project should be undertaken. The Conference on
DAta SYs terns L-anguages (CODASYL) developed out of this meeting.

The original COBOL specification resulted from the work of a committee of
CODASYL. By September, 1959, this committee had specified a language which

they considered superior to existing language-compiler systems. Tiiis language
specification was further modified and by December, 1959, COBOL existed as a
language that was not identified v/ith any manufacturer and therefore presented
advantages for both government and private industry users.

1.1.1 Initial Organization

Tlie product of phase I of COBOL development was a report published in April

of 19bO by the Government Printing Office entitled "COBOL---A Report to the
Conference on Data Systems Languages, including Initial Specifications for a

Common Business Oriented Language (COBOL) for Programming Electronic Digital

Computers". The language described in this report has since become known as
COBOL-60.

1.1.2 The COBOL Maintenance Committee

Tae Executive Comjiiittee of CODASYL recognized that the task of defining
COBOL was a continuing one and that the language had to be maintained and

improved. To this end, the COBOL Maintenance Committee was created and charged
with the task of answering questions arising from users and implcmentors of the

language and making definitive modifications, including additions, clarifica-
tions, and changes to the language.

The Maintenance Committee was comprised of a Users Group and a Manufacturers

Group. Tliese groups met together but voted on proposals separately.

In order to devote concentrated attention to publishing a revised and up-

dated "COBOL 60", the Executive Committee created a Special Task Group. The
product of this task group was the COBOL-61 manual, which was published by
the Government Printing Office in mid- 1961.

The next official COBOL publication was also the product of the Maintenance

ComBiittce and was called COBOL-61 Extended; released in mid-1963.

1.1.3 The COBOL Committee

In January, 1964, the COBOL Maintenance Committee v;as reorganized to pro-
vide a true industry group and to broaden its scope of activities. The separate

user and manufacturer groups were combined into the COBOL Committee consisting
of three subcommittees: the Language Subcommittee, the Evaluation Subcommittee,
and the Publication Subcommittee.

XIV- 1

History of COBOL

The Language Subcommittee's function was much the same as was that of the
former COBOL Maintenance Committee, namely, the maintenance and further
development of COBOL. In addition it carried on liaison with the United

States of America Standards Institute (USASI: formerly the American Standards

Association — ASA) and the International Organization for Standardization (IS
in their work concerning the development of proposed COBOL Standards.

The Publication Subcommittee was charged with the production of official
COBOL publications and liaison with USASI as to the content of the COBOL

Information Bulletin (CIB) . The CIB is a collection of material relating to
COBOL, distributed to the COBOL community by USASI.

The Evaluation Subcommittee's task was the analysis and evaluation of
compiler implementations and user surveys. This subcommittee provided

information to the COBOL Committee regarding the use of COBOL.

The product of the COBOL Committee was the manual, "COBOL, Edition 1965". .

1.1.4 Programming Language Conmittee

In July, 1968, the CODASYL Executive Committee adopted a revised constitu-
tion which accomplished certain needed organizational changes in an effort to

stabilize and improve the methods of achieving CODASYL objectives. CODASYL

now consists of four standing committees: the Executive Committee, the Pro-
gramming Language Comini.ttee, the Planning Committee, and the Systems Committee

With the formation of the Programming Language Committee (PLC) the former
COBOL Language Subcommittee was elevated to full committee status, and its
chairman became a member of the Executive Committee.

The purpose and objectives of PLC include and extend those of the former

COBOL Language Subcommittee. The objectives are to make possible: compat-
ible, uniform, source programs and object results, with continued reduction

in the number of changes necessary for conversion or interchange of source
programs and data. The PLC concentrates its efforts in the area of tools,

techniques and ideas aimed at the programmer.

The Programming Language Committee is responsible for the presentation
of the COBOL Journal of Development.

1.2 EVOLUTION OF COBOL

1.2.1 C0B0L-60

COBOL-60, the first version of the language published, proved that the
concept of a common business oriented language was indeed practical.

1.2.2 COBOL-51

COBOL-61, the second official version of COBOL, was not completely compat-
ible with COBOL-60. The changes were in areas such as organization of the

Procedure Division rather than the addition of any major functions. The

avowed goal of CODASYL in terms of successive versions of the language was to
make changes of an evolutionary rather than revolutionary nature. This
version was generally implemented and was the basis for many COBOL compilers.

XIV- 2

History of COBOL

1.2.3 COBOL-61 Extended

This version of COBOL was generally compatible with COBOL-61. The term

'generally' must be used, not because of any basic changes in the philosophy
or organization of the language, but because certain arithmetic extensions
and general clarifications did make the syntax for certain statements and

entries different from those in COBOL-61.

COBOL-61 Extended, then, was generally COBOL-61 with the following major
additions and modifications:

a. The addition of the Sort feature,

b. The addition of the Report Writer option,

c. The modification of the arithmetics to include multiple receiving

fields and to add the CORRESPONDING option to the ADD and SUBTRACT statements,
and

d. The inclusion of various clarifications.

1.2.4 COBOL, Edition 1965

This version of COBOL included COBOL-61 Extended plus certain additions and
modifications .

The major changes incorporated in COBOL, Edition 1965, were:

a. The inclusion of a series of options to provide for the reading,

writing and processing of mass storage files,

b. The addition of the Table Handling feature which includes indexing
and search options,

c. The modification of the specifications to delete the requirement for

specific error diagnostic messages,

d. The deletion of the terms "Required" and "Elective", and

e. The inclusion of various clarifications.

1.2.5 COBOL, 1968

This version of COBOL, published in the Journal of Development, was based
on COBOL, Edition 1965, with certain additions and deletions.

The major changes incorporated in COBOL, 1968, were:

a. The inclusion of inter-program communication and the concept of a
run unit,

b. The elimination of redundant editing clauses and certain data clauses

more succinctly expressed by the PICTURE clause,

XIV-3

History of COBOL

c. An improved COPY specification for all divisions except the Identifi-
cation Division and the elimination of the INCLUDE statement,

d. The inclusion of a hardware independent means of specifying and testing
for page overflow conditions,

e. The elimination of type 4 abbreviations,

f. The elimination of the DEFINE statement,

. g. Tlie inclusion of a remainder option for the DIVIDE statement,

h. The deletion of NOTE and REMARKS in favor of a general comment capabil-
ity for all divisions,

i. The inclusion of the SUSPEND statement as additional means of control-
ling graphic display devices,

j. The inclusion of additional abbreviations,

k. A revision of the EXAMINE statement tp allow the specification of

dynamic parameter values, and

1. The inclusion of various clarifications.

1.2.6 COBOL, 1969

This version of COBOL, published in the Journal of Development, is based on
COBOL, 1968, with certain additions and deletions.

The major changes incorporated in COBOL, 1969, are:

a. The deletion of the EXAMINE statement and the inclusion of a more

powerful statement, INSPECT, in its place,

b. The inclusion of a communication facility to permit input and output
with communications devices,

c. The inclusion of the STRING and UNSTRING statements, to facilitate

character string manipulation,

d. Deletion of the CONSTANT SECTION of the Data Division,

e. The inclusion of a compile-time page ejection facility,

f. The inclusion of a facility to access the system's date and time,

g. The inclusion of a SIGN clause as a means of specifying the position
and mode of representation of the operational sign, and

h. The inclusion of various clarifications.

XIV- 4

History of COBOL

1.2.7 COBOL, 1970

This version of COBOL, published in the Journal of Development, is based on

COBOL, 1969, with certain additions, deletions, and modifications.

The major changes incorporated in COBOL, 1970, are:

a. The deletion of the RANGE clause,

b. The inclusion of the INITALIZE statement, to facilitate setting data

items to values consistent with their- data descriptions,

c. The inclusion of a debugging facility,

d. The inclusion of a merge facility,

e. A complete revision to the Report Writer function, and

f. The inclusion of various clarifications.

1.2.8. COBOL, 1973

This version of COBOL, published in the Journal of Development, is based on
COBOL, 19 70, with certain additions, deletions, and modifications.

The major changes incorporated in COBOL, 1973, are:

a. A revision and extension to the mass storage facility,

b. A clarification and extension to the COBOL library facility,

c. An enhancement of the INSPECT statement,

d. A revision to the file control entry for a sort or merge file which
included the deletion of Format 3,

e. A revision to the RERUN facility,

f. The removal of the restriction on 77 level-numbers that they must
precede 01 level-numbers,

g. The inclusion of a page advancing feature as part of the I-JRITE
statement ,

h. A clarification and enhancem.ent of the COBOL language structure,

i. An enhancement of the LINAGE clause to permit specification of margins,
and

j. The inclusion of various clarifications.

XIV-5

History of COBOL

1.3 STANDARDIZATION OF COBOL

1.3.1 Initial Standardization Effort
V

The USA Standards Committee on Computers and Information Processing, X3j
was established in 1960 under «he sponsorship of the Business Equipment

'Manufacturers Assoca tion . The X3 Committee in turn established the X3.4
Subcommittee to pur.sue standards in the area of Common Programming Languages.

Subsequently, Working Group X3.4.4 with the title "Processor Specification and

COBOL Standards" was established to pursue a COBOL standard. Part of the scope
of X3.4.A follows:

"Standardization of COBOL and its characteristics, establishment
of an X3.4 COBOL bulletin, publication of interpretations and

clarifications, and the definition of test problems."

On December 17, 1962, invitations to an organizational meeting of X3.4.4

were sent to manufacturers and user groups v;ho might be interested in parti-
cipating in the establishment of a COBOL standard. The first meeting was held

on January 15-16, 1963, in New York and the ' following program of work was
accepted :

(1) Establish the X3.4 COBOL Information Bulletin (CLB) and provide for

its broad publication.

(2) Ascertain the features of existing or proposed COBOL processors.

(3) Refer ambiguities to the COBOL Maintenance Committee for interpretation.

(4) Publish these interpretations in the CIB.

(5) Write test problems to test specific and combinatorial features of
COBOL.

(6) Refer any new ambiguities which are revealed through the test problems
to the COBOL Maintenance Committee.

(7) \\fhen appropriate, write and publish in the X3.4 CIB a proposed draft
USA Standard for COBOL and process it through the X3 Committee.

(8) \\Then appropriate, publish proposed standard test problems for COBOL

and process them through the X3 Committee.

(9) Review and augment these standards as necessary.

(10) Maintain close liaison with other standards bodies interested in COBOL.

The objective of the X3.4.4 Working Group was to produce a document which

defined the USA Standard or standards for COBOL. The resulting standard lan-
guage was to be based upon the specifications set out in the CODASYL publication.

;V

In August, 1966, the Ainorican Standards Association (ASA) became the USA
Standards Institute (USASI) . Then in the fall of 1969, the USA Standards

Institute (USASI) became the American National Standards Institute (ANSI).

XIV-6

Uictox'ii of COBOL

The criteria used to consider and evaluate various lanp^uage elements for
inclusion in the proposed standard included (not in order of importance) :

(1) General usefulness, as detp?:mined by:
a. Degree of iiupD.ementation
b. User acceptance
c. User desires

d. Experience

(2) Cost of implementation versus advantages of use.

(3) Functional capability of element, considering redundancy.

(4) Overall consistency of defined level.

(5) Upward compatibility.

(6) Processing system capability.

To accomplish its work, X3.4.4 was divided into the fo.llowing four
subgroups :

X3. 4.^.1 - Compiler Features Study Group
X3.4.4.2 - Audit Routine Group
X3.4.4.3 - COBOL Information Bulletin

X3.4.4.4 - Standard Language Specifications

1.3.2 USA Standard COBOL

On August 30, 1966, X3.4.4 completed its work and approved the content and
format for a proposed USA Standard COBOL. The proposed USA Standard COBOL wa
composed of a nucleus and eight functional processing miodules : Table handlin
Sequential Access, Random Access, f^andom Processing, Sort,^ Report Writer,
Segmentation, and Library. The Nucleus and each of the eight modules were

divided into two or three levels. In all cases, the lov^er levels are proper
subsets of the higher levels within the same module. The. minimum jjroposed

standard v.'as defined as the low level of the nucleus plus the low level of
the table handling and sequential access modules. The rrjghest levels of the

nucleus and the eight modules were defined as the full proposed USA Standard
COBOL.

The USA Standards Committee on Computer and Information Processing, X3 ,

authorized publication' of tlie proposed USA Standard COBOL to elicit comment
and criticism from the data processing comiviunity in order that the final
standard reflect the largest public consensus. In April 1967, the proposed
USA Standard COBOL was published, as COBOL Information Bulletin //9 , by the
Association for Computing Machinery, Special Interest Committee on Programmln
Languages (SICPLAN) in the SICPLAN Notices.

X3 also autliorized that concurrent with publication of the proposed USA

Standard C0150L, a IctLcr bal lot ho taken of the members]-i! ■ p of tlic X3 committe
on the acceptability of the proiKjsed USA Standard C0J5OL ;'S a USA Standard.
The balloLs and comi,;c.-u ts received with the l^allots indicated tliat the X3
members V7>;re in favor of the proposed USA Standard COiiOL. X3 voted to move

XIV- 7

History of COBOL

the Random Processing module from the body of the proposed USA Standard COBOL
to an appendix and to forward the proposed Standard on to the Information
Processing Systems Standards Board.

The USA Standard COBOL Proposed by X3 was approved by the Information

Processing Systems Standards Board on August 23, 1968, as a USA Standard. *
The specifications of the USA Standard COBOL was published in the USA

Standards document X3. 23-1968.

The Working Group on Processor Specifications and COBOL, X3.4.4, which
developed the Standard, had the following personnel:

H. Bromberg, Chairman

G. F.
Archer

J.
S. Meach

G. N.
Baird

H.
S . Millman

P. A. Beard S.
N. Naftaly

R. F.
Betscha

P.

B. Olshansky
H.

W. Fischbeck R. S. Pettus
H. R. Fletcher

E.
D. Phillips

R. C. Fredette L. Rodgers
H.

S. Gile

R.

E. Rountree,
N.

C. Godfrey
J.

G. Solomon'

J.
S. Grant

R.

L. Solt
W. D. Green

L.
J . Soma

D.
C. Harris M.

Spratt
M.

Hill
L.

Sturges
K. R. Jensen

M.
V. Vickers

A. N. McMahan
L.

J. Wilson

1.3.3 International Standardization of COBOL

Throughout the entire COBOL standardization activity of the USA X3.4.4

Working Group, close liaison was maintained with the various international

groups. As a result, the USA Standard COBOL complies with the ISO (Inter-
national Organization for Standardization) Recommendation on COBOL.

The ISO Recoimiiendation R-1989 5 Programming Language COBOL, was drawn up
by the Technical Committee ISO/TC 97, Computers and Information Processing,
the Secretariat of which is held by the American National Standards Institute

(ANSI). As a result of a six-year development period, the ISO Recommendation
reflected the requirements of the international data processing community.

The primary objective was to reflect a language rich enough to allow description
of a wide variety of data processing problems and to reflect accurately the
requirements of the Member Bodies of ISO. Great care was also taken to ensure,
as far as possible identical interpretation with respect: to the national COBOL
standards known to be under development.

The Draft ISO Recommendation R~1989 was circulated to all the ISO member
bodies for inquiry in July, 1970. The draft was approved, subject to a few
modifications of an editorial nature, by all but one of the ISO member bodies.

The Draft ISO Recommendation R-1989 was then submitted by correspondence to
the ISO Council which decided to accept it as an ISO Recommendation.

XIV-8

Revision

2. APPENDIX B: THE REVISION OF AMERICAN NATIONAL STANDARD COBOL

2.1 THE ROLE OF X3J4

The American National Standards Institute Technical Committee X3J4 evolved

from Committee X3.4.4 and its subordinate working groups, the bodies respon-
sible for the development of the first COBOL standard (X3. 23-1968) . X3J4

was charged with the responsibility for the maintenance of the COBOL standard

and in the period immediately following the publication of X3. 23-1968, the
committee developed and put into effect procedures to handle requests for
information, clarification or interpretation of that document.

X3J4 began the task of preparing a revision to the COBOL standard in 1969
with the development of criteria against which each candidate for inclusion
in the proposed revision was to be matched. The criteria used were:

(1) The general usefulness of an element or function in terms of:

a. The degree of implementation

b. Acceptance by users

c. The degree to which a function was required

(2) The overall functional capability of the language, considering such
things as redundancy.

(3) The state-of-the-art technology with regard to implementing the
language feature.

(4) The usefulness, in terms of application requireiments , of language
capabilities within each level of a module.

(5) Compatibility with other standards.

(6) The cost of implementation versus advantages of: use.

(7) Overall language consistency within a defined level or module.

(8) Upward compatibility of levels within a module.

Detailed work on the proposed revision began in early 1970 and, with the
committee meeting every 4 to 6 weeks, a draft proposed revision was completed
in June 1972. The COBOL community was apprised of the mature of the proposed
changes through publication, in the first half of 1972,, of COBOL Information
Bulletins 14, 15, and 16.

The American National Standards Institute Committee 33 agreed, in July 19 72,
to accept the draft proposal for publication and subseqiuent letter ballot on
the question of its acceptance as a proposed American National Standard. The
full text of the proposed revision was made available to the COBOL community
for review and comment in September 19 72.

XIV-9

Revision

2.2 INTERACTION WITH OTHER COBOL GROUPS

2.2.1 Programming Language Committee

The entire technical content of this revision to the COBOL standard was

drawn either from the existing COBOL standard (X3. 23-1968) or from the CODASYL
COBOL Journal of Development (JOD) . The Journal of Development is a publica-

tion of the CODASYL Programming Language Committee (PLC) , the body responsible
for the continuing development of the COBOL language. Since the language, and
hence the JOD, is constantly changing, it was necessary to select the JOD of a
given date to serve as the base document for the revision process. This date,

known as the cutoff date, was December 31, 1971. Changes to the language
after that date were considered for inclusion in the revision only where they
were in response to X3J4 proposals or where they affected items whose final
dispostion had been deferred by X3J4 pending specific PLC action.

Throughout the revision cycle, PLC gave priority in its agenda to X3J4
proposals and requests for language clarification. Their generous cooperation
during this period made the task of X3J4 considerably lighter and contributed
significantly to the quality of the revised standard.

2.2.2 International Standardization Bodies

Close and continuous liaison was maintained with the international COBOL

community during the work on the revision. This culminated in February 1972

with a meeting of representatives of X3J4, European Computer Manufacturers
As so ciation Technical Committee 6 (ECMA TC6) , and several ISO (International

Organization for Standardization) member organizations to review the proposed
changes and to resolve any differences of opinion that existed concerning the

technical content of the proposed revision.

ECMA TC6 played a very active part throughout the revision process and made
a number of significant contributions to the enhancement and clarification of
the revision.

2.3 DIFFERENCES BETWEEN X3. 23-1968 AND THE REVISED STANDARD

2.3.1 Format of the Revised Standard

As was the case with X3. 23-1968, the organization of the specifications in
the revised standard is based on a functional processing module concept with

each module divided into two or more levels. Unlike X3. 23-1968, however,
where a separate chapter was devoted to each processing level, each module

in the revised document is covered in a single chapter. The high level

features are boxed and any restrictions in the low levels are covered by
additional rules.

The revision defines a Nucleus and eleven functional processing modules:

Table Handling, Sequential I-O, Relative I-O, Indexed I-O, Sort-Merge, Report

Writer, Segmentation, Library, Debug, Inter-Program Coromunication , and Communi-

cation. Nine modules contain a null set as their lowest level' and in all cases
the lower levels are proper subsets of the higher levels within the same module

XIV- 10

Modul.: Ooervic-

2.3.2 Overviev; of the Revised Modules

As in X3. 23-1968, the Nucleus is divided into two levels. The major changes
introduced into the Nucleus are:

(1) The REMARKS paragraph and the NOTE statement have hcen deleted in

favor of a generalized comment facilTty. An s'"' in character position 7 nov/
identifies any line as a comiTient line. A further refinement of this (a slash

'/' in cliaracter position 7) causes the line to be treated as a comment and
causes page ejection.

(2) The EXAMINE statement has been deleted in favor of the more general

and powerful INSPECT statement. The INSPECT statement provides the ability
to count (Format 1) , replace (Format 2) or count and replace (Format 3)

occurrences of single characters or groups of characters in a data item.

(3) Level 77 items need no longer precede level 01 items in the Working-
Storage Section.

(A) The punctuation rules with regard to spaces have been relaxed, e.g.,
spaces may now optionally precede the comma, period or semicolon, and may
optionally precede or follow a left parenthesis.

(5) Tv70 contiguous quotation marks may be used within a nonnumeric literal
to represent a single occurrence of the character quotation mark.

■ (6) A SIGN clause has been added that permits the specification of the
position that the sign is to occupy in a signed numeric item (either leading
or trailing) and/or that it is to occupy a separate character position.
Other changes in the Data Division permit the object of a REDEFINES clause to
be subordinate to a data item described with an OCCURS clause, set the maximum

size of a numeric field at 18 digits, permit the stroke '/' as an editing
character and specify some tightening of the rules concerning literals in the
VALUE clause (if the literal is signed, the data item must be described as
signed; if the data item is numeric edited, the literal must be nonnumeric) .

(7) The ACCEPT statement has been expanded to provide access to internal
DATE, DAY and TIME.

(8) GIVING identifier series has been added to the arithmetic statements;
identifier series has been added to the COMPUTE statement; and INTO identifier
series has been added to the DIVIDE statement.

(9) , The STRING statement has been added. This statement provides for the

juxtapositioning within a single data item of the partial or complete contents
of tvjo or more data items. A companion statement, the UNSTRING, has also been

added. This statement causes contiguous data within a single data item to be
separated and placed in multiple receiving fields.

(10) Certain ambiguities in abbreviated combined conditions with regard to
NOT and the use of parentheses have been eliminated. Vvhere any portion of an

abbreviated combined condition is enclosed in parentheses, all subjects and
operators required for the expansion of that portion must be included v/ithin
the same set of parentheses.

XIV- 11

Module Overview

(11) The PROGRAM COLLATING SEQUENCE clause was added, to permit specifica-
tion of the collating sequence used in nonnumeric comparisons. Native, ASCII,

implementor-def ined and user-defined collating sequences may be specified.
This makes possible the processing of ASCII files without changing source
program logic.

The Table Handling module is divided into two levels; Level 1 contains

essentially all that appears in Levels 1 and 2 of X3. 23-1968, and Level 3 of

X3. 23-1968 becomes Level 2 in the revision. Among the more important changes
introduced into this module are:

(1) The left parenthesis enclosing subscripts need not be preceded by a
space. Commas are not required between subscripts or indices. Literals and

index-names may be mixed in a table reference.

(2) A data description entry that contains an OCCURS DEPENDING ON clause
may only be followed, within that record description, by data description

entries that are subordinate to it. Thus, the "fixed" portion of a record
must entirely precede any "variable" portion. The effect of the OCCURS
DEPENDING ON was clarified to state explicitly that internal operations
involving tables described with this clause reference only the portion of the

table that is "active" (i.e., the actual size as defined by the current value
of the operand of the DEPENDING ON phrase is used) .

(3) An index may be set up or down by a negative value.

(4) The subject of the condition in the WHEN phrase of the SEARCH ALL
statement must be a data item named in the KEY phrase of the referenced table;

the object of this condition may not be such a data item. X3. 23-1968 speci-
fied that either the subject or the object could be a data item named in the

KEY phrase.

As in X3. 23-1968, the Sequential I-O module is divided into two levels.

Among the significant changes intro'^.uced into this module are:

(1) The FILE-LIMITS clause, the MULTIPLE REEL/UNIT clause, and the integer
implementor-name phrase of the file control entry were deleted because it was
felt that these functions could be handled better outside of the COBOL

prograni .

(2) The SEEK statement was deleted because it was felt to be redundant (it

is implied by the READ, WRITE, etc.) and ineffective.

(3) . OPEN REVERSED now positions a file at its end. OPEN EXTEND was added
to permit the addition of records at the end of an existing sequential file.

(4) USE AFTER STANDARD ERROR was changed to read USE AFTER STANDARD

ERROR/ EXCEPTION ; the function was expanded to permit invocation of the asso-
ciated procedure on both error (e.g., boundary violation) or exception (e.g.,

AT END) conditions.

(5) The AT END phrase of the READ statement was made optional; it must
appear, however, if no applicable USE procedure appears.

XIV- 12

Module Overvieb)

(6) The INVALID KEY phrase of the WRITE was deleted since there is no

user-defined key for sequential files. Error and/or exception conditions can
be monitored through appropriate USE statements.

(7) Tlie FILE STATUS clause was added to permit the system to convey
information to the program concerning the status of I/O operations. Codes

for "error", AT END, etc., have been defined.

(8) The REWRITE statement was added to permit the explicit updating of
records on a sequential file.

(9) The LINAGE clause was added to permit programmer definition of logical
page size and of the size of top and bottom margins on the logical page.

(10) The PAGE phrase was added to the WRITE statement to permit presenta-
tion of a line before or after advance to the top of the next logical page.

(11) The facility of define, initialize and access user-defined labels has
been deleted.

(12) The CODE-SET clause has been added to provide for conversion of

sequential non-mass storage files encoded in ASCII or implementor7specif ied
codes from/ to the native character code.

The Random Access module of X3. 23-1968 has been replaced by two new modules,
the Relative I-O and Indexed I-O modules. Both of the modules are composed of
three levels, the first of which is null. While there is much functional and

even syntactic similarity between the Relative I-O module and the existing
Random Access module, the Indexed I-O module has no functional equivalent in
the previous standard.

Among the major features of the Relative I-O module are:

(1) An ORGANIZATION IS RELATIVE clause.

(2) A RELATIVE KEY clause.

(3) An ACCESS MODE clause which specifies random, sequential or dynamic
access. Dynamic access permits the file to be accessed both randomly and
sequentially.

(4) FILE STATUS and USE AFTER STANDARD ERROR/ EXCEPTION as outlined in the

Sequential I-O module. Here also the USE procedure may be used in place of
the AT END and INVALID KEY phrases of the READ, WRITE, etc.

(5) In addition to OPEN, CLOSE, READ and WRITE, the DELETE, REWRITE, and

START verbs are provided. READ NEXT provides for the intermixing of sequen-
tial with random accesses of the file (when access mode is dynamic) . START

provides the facility to position the file such that the next sequential READ
statement will reference a specified record.

Among the major features of the Indexed I-O module are:

(1) An ORGANIZATION IS INDEXED clause.

XIV- 13

Module Overview

(2) An ACCESS MODE clause with characteristics similar to that of the

Relative I-O module.

(3) FILE STATUS and USE procedures, as in the Relative 1-0 module.

(4) The RECORD KEY clause specifies the data item that serves as the

unique identifier for each record. The data item is known as the prime record
key. The ALTERNATE KEY clause specifies additional (alternate) keys for the
file. All insertion, updating or deletion of records is done on the basis of
the prime record key. Retrieval, however, may be on the basis of either the
prime or alternate record keys, thus providing more than one access path
through the file.

(5) As in the Relative 1-0 module, the new verbs DELETE, START and REWRITE
are available. READ NEXT and READ... KEY IS... are also available; the latter
provides the means of specifying the key upon which retrieval is to be based

(prime or alternate) . The START statement also provides the means of speci-
fying whether the prime or alternate key is to be used for positioning the

file.

The Sort-Merge module contains three levels, one of which is null. The
major change to the Sort module of the previous standard has been the addition
of a MERGE statem.ent to permit the combination of two or more identically
ordered files. The I4ERGE statement parallels the SORT statement in format,

except that no input procedure is provided. The COLLATING SEQUENCE phrase has

been added to permit overriding of the program collating sequence when execut-
ing a SORT or MERGE statement.

The Report Writer module has two levels, one of which is null (X3. 23-1968
has two non-null levels) . The Report Writer module was completely rewritten
in order to remove existing ambiguities and to provide a stronger and more
useful facility. Care was taken in the rewrite not to imply that reports had
to be presented on a printer (rather than on a type of graphic device) .

The Segmentation module has three levels, the first of which is null. The

major changes introduced are:

(1) There is no logical difference between fixed and fixed overlayable

segments (X3. 23-1968 placed certain restrictions on the range of PERFORM' s
involving fixed overlayable segments) .

(2) A PERFORM statement in a non-independent segment may have only one of

the following within its range: (I) non-independent segments or (2) sections
wholly contained in a single independent segment. A similar constraint applies

to a PERFORM in an independent segment, except that (2) reads "Sections wholly
contained in the same independent segment." Where a SORT or MERGE statement
appears in a segmented program, then any associated input/output procedures
are subject to tl^e same constraints that apply to the range of a PERFORM

(e.g., where the SORT is in a non-independent segment, the associated input/

output procedures must be either wholly contained in non-independent segments
or wholly contained in a siiigle independent segment) .

The Library module has a null level and two non-null levels. The major
changes introduced are:

XIV- 14

Module Overview

(1) The COPY statement may appear anywhere in the program that a COBOL

word or separator may appear (X3. 23-1968 permitted the COPY statement to
appear only in certain specified places) .

(2) More than one library can be available.

(3) All occurrences of a given literal, identifier, word or group of

words in the library text can be replaced. (X3. 23-1968 did not permit
replacement of groups of words.)

(4) The matching and replacement process has been significantly clarified.

The new Debug module provides a means by which the programmer can specify
a debugging algorithm, including the conditions under which data items or
procedures are to be monitored during program execution. This module has a

null level and two non-null levels. The major features of this module are:

(1) A USE FOR DEBUGGING statement which permits full or selective proce-
dure and data-name monitoring; control is passed to the procedure when the

specified condition arises. Associated with the execution of each debugging
section (i.e., the declarative procedure associated with the USE FOR DEBUGGING

statement) is the special register DEBUG-ITEM. This is updated by the system
each time a debugging section is executed with such information as the name
(with occurrence numbers if it should be the name of a table element) , that
caused the execution, the line number upon which the name appears, etc. The
USE FOR DEBUGGING statements and their associated declarative procedures are
treated as comment lines if the WITH DEBUGGING MODE clause does not appear in
the program. An object time switch is also provided, outside of the COBOL

program, through which the USE FOR DEBUGGING procedures can be "turned off"
without the need to recompile the program.

(2) Debugging lines. Any line with a "D" in the continuation area is a
debugging line and will be compiled and executed only if the WITH DEBUGGING

MODE clause appears in the program. Where this compile time switch does not
appear in the program, these lines are treated as comment lines. The setting
of the object time switch has no effect on the execution of debugging lines.
Through the debugging line facility, the programmer has at his disposal the
full power of the COBOL language for debugging purposes.

The new Inter-Program Communication module provides a facility by which a
program can communicate with one or more other programs. This communication
is provided by: (a) the ability to transfer control from one program to
another within a run unit and (b) the ability for both programs to have access
to the same data items. This module has three levels, the first of which is

null. The major features of this module are:

(1) The CALL statement causes control to be transferred from one object

program to another. The CALL statement can be "static" (i.e., the name of
the called program is known at compile time) or dynamic (i.e., the name of
the called program is not known until program execution time) . The USING
phrase of the CALL statement names the data to be shared with the called

program; a USING phrase in the Procedure Division header of the called program
specifies the names by which this shared data is to be known in the called
program. The ON OVERFLOW phrase of the CALL statement will cause control to

XIV- 15

Substantive Changes

be transferred to an associated imperative statement if there is not enough

memory available at execution time to permit the loading of the called program.

(2) The CANCEL statement releases the areas occupied by called programs
that are no longer required to be in memory..

(3) The EXIT PROGRAM statement marks the logical end of a called program

and causes control to be returned to the calling program (i.e., the program
in which the CALL statement appears) .

(4) The Linkage Section appears in a program that is to operate under the
control of a CALL statement. It is used in the called program to describe

data that is to be made available from the calling program through the CALL
USING facility described above.

The new Communication module provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote communication devices.

Ttiis new module has three levels, the first of which is null. Among the major
features of the module are:

(1) The communication description entry (CD) specifies the interface area
between the Message Control System (MCS) and a COBOL program. The CD specifies

the input message queue structure, the symbolic names of destinations for out-
put messages and such things as message date, message time and text length.

(2) The ENABLE and DISABLE statements notify the MCS to permit or inhibit
the transfer of data between specified output queues and destinations for
output or between sources and input queues for input.

(3) The RECEIVE statement makes available, from a queue maintained by the

Message Control System, to the COBOL program a message, or portion thereof,
and pertinent information about the message.

(4) The SEND statement causes a message or a portion of a message to be
released to one or more output queues maintained by the MCS.

(5) The ACCEPT MESSAGE COUNT statement causes the number of messages in a
queue to be made available.

(6) The FOR INITIAL INPUT clause of the CD entry permits the MCS to

schedule a program for execution upon receipt of a message for that program.

In addition to the technical changes outlined above, a number of changes
were made in the definition of an implementation of Ameri.can National Standard

COBOL. (See page 1-4.)

2.3.3 Substantive Changes

The list beginning on page XIV-]7 contains the changes of substance that
have been included in the revised standard. The code reflected under the
remarks column is as follows :

(1) Indicates the change will not impact existing programs. For example,
a new verb or an additional capability for an old verb.

XIV- 16

Subs ianti ve Cliangar.

(2) Indicates the change could impact existing programs and some

re— progromiiiing may be needed. For example, v/here the semantics or syntax of

an exif-.ting verb were changed.

(3) Indicates that the change impacts an area that was iinplementor-def ined
in the original standard. As such it may or may not affect existing programs,

Additiions to the reserved word list that will impact existing programs are
not dncQuded in the list.

Language elements associated with the Report Writer module are not assigned
codes because the report writer specifications were completely rewritten and

comparison with the previous standard is therefore not meaningful.

SUBSTANTIVE CHANGE

MODULE
AFFECTED REMA.RKS

Space may immediately precede or may
immediately follov; a parenthesis

(except in a PICTURE character-string)

1 NUC (1) Relaxes punctuation
rules .

Period, comma, or semicolon may be
precf:ded by a space.

1 NUC (1) Relaxes punctuation
1 TBL rules.

3. Semicolon and comma are interchangeable. 1 NUC

4. An asterisk in the continuation 1 NUC

area (seventh character position)
causes the line to be treated as a

comment by the compiler. The comment

line may appear in any division.

5. A stroke (slash, '/', virgule) in the 1 NUC
continuation area (seventh character

position) of a line causes page ejec-
tion of the compilation listing. (The

line is treated as a comment.)

(1)

(1) New feature; replaces
the NOTE statement and
REMARKS paragraph.

(1)

6. A phrase or clause (as well as a

sentence or entry) may be continued

by starting subsequent lines in
area B.

1 NUC (1)

7. Tvs'o contiguous quotation marks may be
used to represent a single quotation
mark character in a nonnumeric literal.

1 NUC (1) New feature.

8. Last line in program may be a comment
line .

1 NUC (1)

Mnemonic-name must have at least one
alphabetic character.

1 NUC (3) X3. 23-1968 had no
such restriction.

XIV- 17

Sybstantive Changes

SUBSTANTIVE CHANGE

10. Number of qualifiers permitted is

implementor-def ined , but must be at
least five.

11. Complete set of qualifiers for a name
may not be same as partial list of
qualifiers for another name.

12. REMARKS paragraph is deleted.

MODULE
AFFECTED

2 NUC

2 NUC

1 NUC

13. Continuation of Identification Division

comment-entries must not have a hyphen
in the continuation indicator area.

14. PROGRAM COLLATING SEQUENCE clause

specifies that the collating sequence

associated with alphabet-name is
used in nonnumeric comparisons.

15. SPECIAL-NAMES paragraph: 'L', '/', and
'=* may not be specified in the CURRENCY
SIGN clause.

16. Alphabet-name clause relates a user-
defined name to a specified collating

sequence or character code set (.ANSI,

native, or implementor-specif ied) .

17. Alphabet-name clause: the literal

phrase specifies a user-defined
collating sequence.

18. Condition-name may be given the status
of an implementor-def ined switch.
Switches are implementor-def ined and
may be either software or hardware
switches.

19. All items which are immediately

subordinate to a group item must have
the same level-number.

20. Level 77 items need not precede level

01 items in the Working-Storage Section.

21. Level numbers 02-49 may appear anywhere
to the right of margin A. (Margin A
is defined as being between character
positions 7 and 8.)

1 NUC

1 NUC

2 NUC

1 NUC

2 NUC

1 NUC

1 NUC

REMARKS

(2) X3. 23-1968 specified
no such lower limit.

(2)

(2) Function was replaced

by the comment line .

(2)

(1) New feature.

(2) This restriction
did not exist in
X3. 23-1968.

(1) New feature.

(1) New feature.

(1) X3. 23-1968 specified
hardware switches only.

(2)

1 NUC (1) New feature.

1 NUC (1)

XIV- 18

ujihs tcviti ve Cha / lo es

MODULE

SUnSTAMTIVE CHANGE AFFECTED REMARKS

22. Object of a REDEFINES clause can be
subordinate to an item described with

an OCCURS clause, but ir.ust not be
referred to in the REDEFINES clause

with a subscript or an index.

23.

24. Multiple redefinition of same storage
area permitted.

25.

26. Alphabetic PICTURE cb.aracter-str ing
may contain the character B.

27.

28. Stroke (/) permitted as an editing
character .

29. PICTURE character-string is limited
to 30 characters.

30. SIGN clause allows the specification
of the sign position.

31. A signed numeric literal cannot be
used in a VALUE clause unless it is

associated with a signed PICTURE

character-string.

32. If the item is numeric edited, the
literal in the VALUE clause must be
nonnumeric .

1 NUC (1) New feature.

1 NUC (3)

1 NUC (1) New feature.

1 NUC (i) New feature.

1 NUC (3) X3. 23-1968 defines
limit as 30 symbols where
one symbol could have
been two characters.

1 NUC (i) New feature.

1 NUC (2)

1 NUC (2)

REDEFINES: No entry with lower level- 1 NUC (2) X3. 23-1968 had
number can appear between the redefined no such restriction,
and redefining items.

As asterislc used as a zero suppression 1 NUC (2)
symbol in a PICTURE clause and the
BLANK WIEN ZERO clause may not
appear in the same entry.

The number of digit positions that
be described by a numeric PICTURE

character-string cannot exceed 18.

can 1 NUC (2) X3. 23-1968 had
no such rule.

33. In the Procedure Division a section may 1 NUC (1) New feature,
contain zero or more paragraplis and a .
paragraph may contain zero or more
sentences .

34. The unary + is permitted in 2 NUC (i) New feature,
arithmetic expressions.

XIV- 19

Siu'yS tun live Changes

3b

36,

37

38,

39

40,

Al,

42,

43,

44

45,

SUBSTANTIVE CHANGE

The TO is not required in the

EQUAL TO of a relation condition.

In relation and sign conditions,

arithmetic expressions must
contain at least one reference
to a variable.

Comparison of nonnumeric operands;
If one of the operands is described as
numeric 5 it is treated as though it
were moved to an alphanumeric item of
the same size and the contents of this

alphanumeric item were then compared
to the nonnumeric operand.

Abbreviated combined relation

condition: Wien any portion is
enclosed in parentheses, all subjects

and operators required for the expan-
sion of that portion must be included

within the same set of pareiitheses .

Abbreviated combined relation

condition: If NOT is immediately

followed by a relational operator,
it is interpreted as part of the
relational operator.

Class condition: The numeric test

cannot be used with a group item
composed of elementary items

described as signed.

In an arithmetic operation, the

composite of operands must not
contain more than .18 decimal digits.

ACCEPT identifier FROM DATE/DAY/TIME

allows the programmer to access the

date, day, and time.

MODULE
AFFECTED

1 NUC

1 NUC

ADD statement
series .

the GIVING identifier

COMPUTE statement:
series .

the identifier

1 NUC

2 NUC

2 NUC

1 NUC

1 NUC

2 NUC

DISPLAY statement: If the operand is a 1 NUC

numeric literal, it must be an unsigned
integer.

REMARKS

(1) X3. 23-1968 required
the word TO.

(2)

(3)

(2) No such restriction

appeared in X3. 23-1968.

(2) In X3. 23-1968,
NOT was a logical

operator in such cases

(3)

(2) X3. 23-1968 specified
limits only for ADD and
SUBTRACT.

(1) New feature.

2 NUC (1) New feature.

2 NUC (1) New feature.

(2)

XIV-20

Substantive Changes

SUBSTANTIVE CHANGE
MODULE

AFFECTED REMARKS

46. DIVIDE statement: the INTO identifier 1 NUC
series and the GIVING identifier series.

47. DIVIDE statement: the remainder item 2 NUC
can be numeric edited.

48. GO TO statement: the word TO is not 1 NUC

required .

49. EXAMINE statement and the special 1 NUC
register TALLY were deleted.

50. INSPECT statement provides ability 1 NUC
to count or replace occurrences of
single characters or groups of
characters .

51. MOVE statement: A scaled integer item 1 NUC
(i.e., the rightmost character of the

PICTURE character-string is a P) may be
moved to an alphanumeric or alphanumeric
edited item.

(2)

(1) New feature.

(1) X3. 23-1968 requires
the word TO.

(2) Function was replaced
by the INSPECT statement.

(1) New feature.

(1) New feature,

52. MULTIPLY statement: the BY identifier
series and the GIVING identifier series

53. PERFORM statement: Format 4 (PERFORM

...VARYING, not using index-names)
identifiers need not be described as

integers .

54. PERFORM statement: Changing the FROM 2' NUC
variable during execution can affect
the number of times the procedures are
executed in a Format 4 PERFORM if more

than one AFTER phrase is specified.

55. PERFOPvM statement: There is no logical 1 NUC
difference to the user between fixed

and fixed overlayable segments.

56. A PERFORM statement in a non-indepen- 1 NUC
dent segment can have in its range 1 SEG
only one of the following:

a. Non-independent segment (fixed/
fixed overlayable)

b. Sections and/or paragraphs

wholly contained in a single
independent segment.

2 NUC (1) New feature,

2 NUC (1) New feature,

(2)

(1) X3. 23-1968 did not
permit fixed overlayable

segments to be treated
the same as a fixed

segment .

(3)

XIV-21

Substantive Changes

57,

58.

59

60,

61,

62,

63,

64,

65,

66,

67

SUBSTANTIVE CHANGE

A PERFORM statement in an independent

segment can have in its range only
one of the following:

a. Non-independent segments (fixed/
fixed overlayable) .

b. Sections and/or paragraphs wholly
contained in the same independent

segment as that PERFORM.

PERFORM' statement : Control is passed
only once for each execution of a
Format 2 PERFORM statement. (i.e.,

an independent segment referred to
by such a PERFORM is made available
in its initial state only once for

each execution of that PERFORI'I
statement.)

STOP statement: If the operand is
numeric literal, it must be an

unsigned integer.

STRING statement provides for the

juxtaposition of the partial or
complete contents of two or more
data items into a single data item.

STRING: Delimiter identifiers need

not be fixed length items.

SUBTRACT statement:
identifier series.

the GIVING

UNSTRING statement permits contiguous

data in sending field to be separated

and placed into multiple receiving
fields .

Commas are not required between

subscripts or index-names'.

Literal subscripts may be mixed

with index-names when referencing a
table item.

The DEPENDING phrase is now required
in the Format 2 of the OCCURS clause.

Integer- 1 cannot be zero in the
Format 2 of the OCCURS clause.

MODULE
AFFECTED

1 NUC

1 SEG

1 NUC

1 SEG

1 NUC

2 NUC

1 TBL

REMARKS

(3)

(3)

(2)

(1) New feature.

2 NUC (1)

2 NUC (1) New feature.

2 NUC (1) New feature.

(1)

1 TBL (1) New feature.

2 TBL (2) X3. 23-1968 has no
restriction.

2 TBL (2)

XIV-22

Substantive Changes

SUBSTANTIVE CHANGE
MODULE

AFFECTED REMARKS

68. A data description entry with an OCCURS
DEPENDING clause may be followed within

that record, only by entries subordi-
nate to it. (i.e., only the last part

of the record may have a variable
number of occurrences.)

69. When a group item, having subordinate 2 TBL (2)
to it an entry that specifies Format 2
of the OCCURS clause, is referenced,
only that part of the table area that
is defined by the value of the operand
of. the DEPENDING phrase will be used
in the operation. (i.e., the actual
size of a variable length item is
used, not the maximum size.)

70. If SYNCHRONIZED is specified for an 1 TBL (3)
item containing an OCCURS clause,

any implicit FILLER generated for
items in the same table are generated
for each occurrence of those items.

71. The results of a SEARCH ALL operation 2 TBL (3)
are predictable only when the data in
the table is ordered as described by
the ASCENDING/DESCENDING KEY clause

associated with identifier- 1 .

2 TBL (2) This rule did not

appear in X3. 23-1968.

72. The subject of the condition in the 2 TBL

WHEN phrase of the SEARCH ALL state-
ment must be a data item named in the

KEY phrase of the table; the object
of this condition may not be a data
item named in the KEY phrase.

73. SEARCH. . .VARYING identif ier-2 : If 2 TBL

identifier-2 is an index data item,
it is incremented as the associated
index is incremented.

74. In Format 2 of the SET statement, 1 TBL
literal may be negative.

75. File control entry: The ASSIGN TO 1 SRT

implementor-name-1 OR implementor-
name-n clause for the GIVING
file of a SORT statement was deleted.

(2) X3. 23-1968 specified
that either the subject

or object could be a
data item named in the

KEY phrase.

(3) In X3. 23-1968 the
data item is incremented

by same amount as
occurrence number, i.e.,

by one .

(1) New feature.

(2)

76. MERGE statement 2 SRT (1) New feature.

XIV- 2 3

Substantive Changes

MODULE

SUBSTANTIVE CHANGE AFFECTED REMARKS

77. RELEASE. . .FROM identifier is placed

in Level 1 of Sort-Merge module.

78. RETURN. . .INTO identifier is placed

in Level 1 of Sort-Merge module.

79. SORT statement:
series .

80. SORT statement: semicolon deleted
from format.

81. SORT statement: COLLATING SEQUENCE

phrase provides the ability to
override the program collating

seuqence.

82.

83.

84.

85.

86.

87.

88. PAGE-COUNTER is always generated.

89. PAGE-COUNTER does not need to be
qualified in the Report Section.

90. LINE-COUNTER is always generated.

91. LINE-COUNTER does not need to be
qualified in the Report gection.

1 SRT (1) Was a Level 2
feature .

1 SRT (1) Was a Level 2
feature .

1 SRT (2)

2 SRT (1) New feature

riction

RPW

RPW

RPW

RPW

the USING file-name 2 SRT (1) X3. 23-1968 allowed

only one file-name.

No more than one file-name from , 2 SRT (2)
a multiple file reel can appear
in a SORT statement.

Where a SORT or MERGE statement 1 SRT (2) No such rest

appears in a segmented program, then 1 SEG in X3. 23-1968.
any associated input/output procedures
are subject to the same constraints

that apply to the range of a PERFORM.

Segment-numbers permitted in 1 SEG (1)
declaratives .

PAGE-COUNTER and LINE-COUNTER are RPW
described as unsigned integers that
must handle values from 0 through 999999.

The value in LINE-COUNTER must not be RPW
changed by the user.

LINE-COUNTER, PAGE-COUNTER and sum RPW
counters must not be used as subscripts
in the Report Section.

XIV-24

Substantive Changes

MODULE
SUBSTANTIVE CHANGE AFFECTED REMARKS

92. The words LINE and LINES are optional RPW
in the PAGE clause.

93. The DATA RECORDS clause and the REPORT RPW

clause are mutually exclusive.

94. A report may not be sent to more RPW
than one file.

95. RESET is no longer a clause; it is a RPW
phrase under the SUM clause.

96. Multiple SUM clauses may be specified RPW
in an item; multiple UPON phrases may
be specified.

97. Up to three hierarchical levels are RPW

permitted in a report group description.

98. A report group level 01 entry cannot RPW
be elementary.

99. An entry that contains a LINE NUMBER RPW
clause must not have a subordinate

entry that also contains a LINE
NUMBER clause.

100. An entry that contains a COLUMN NU^IBER RPW
clause but no LINE NUMBER clause must be

subordinate to an entry that contains
a LINE NUMBER clause.

101. An entry that contains a VALUE clause RPW
must also have a COLUMN NUMBER clause.

102. In the CODE clause, mnemonic-name has RPW

been replaced by literal. (A two char-
acter nonnumeric literal placed in the

first two character positions of the
logical record.)

103. If the CODE clause is specified for any RPW
report in a file, it must be specified
for all reports in the same file.

104. Control data items may not be RPW
subscripted or indexed.

105. Each data-name in the CONTROL clause RPW
must identify a different data item.

XIV-25

Substantive Changes

MODULE
SUBSTANTIVE CHANGE AFFECTED

106. The GROUP INDICATE clause may only RPW
appear in a DETAIL report group entry

that defines a printable item (contains
a COLUMN and PICTURE clause.)

107. LINE clause integers must not exceed RPW
three significant digits in length.

108. The NEXT PAGE phrase of the LINE clause RPW

is no longer legal in RH, PH, and PF

groups .

109. A relative LINE NWIBER clause can no RPW

longer be the first LINE NUMBER clause
in a PAGE FOOTING group.

110. A NEXT GROUP clause without a LINE RPW

clause is no longer legal.

111. Integer-2 in the NEXT GROUP clause must RPW
not exceed three significant digits in
length .

112. If the PAGE clause is omitted, only a RPW
relative NEXT GROUP clause may be

specified.

113. The NEXT PAGE phrase of the NEXT GROUP RPW
clause must not be specified in a
PAGE FOOTING report group.

'IIA. The NEXT GROUP clause must not be RPW
specified in a REPORT FOOTING report

group.

115. The phrases of the PAGE clause may be RPW
written in any order.

116. In the PAGE clause, the maximum size RPW

of the integer is three significant

digits.

117. It is no longer possible to sum upon RPW
an item in another report.

118. Source-sum correlation is not required. RPW
(Operands of a SUM clause need not be

operands of a SOURCE clause in DETAIL

groups .)

119. TYPE clause data-names may not be RPW
subscripted or indexed.

XIV-26

Substantive Changes

MODULE
SUBSTANTIVE CHANGE AFFECTED REMARKS

120. PAGE HEADING and PAGE FOOTING report RPW
groups may be specified only if a

PAGE clause is specified in the corre-
sponding report description entry.

121. In CONTROL FOOTING, PAGE HEADING, PAGE RPW

FOOTING, and REPORT FOOTING report

groups, SOURCE clauses and USE state-
ments may not reference:

a. Group data items containing
control data items.

b. Data items subordinate to i<
control data item.

c. A redefinition or renaming of any
part of a control data item.

In PAGE HEADING and PAGE FOOTING report
groups, SOURCE clauses and USE statements

must not reference control data-name.

122. In summary reporting, only one detail RPW

group is allowed.

123. The description of a report must RPW
include at least one body group.

124. Report files must be opened with either RPW
the OPEN OUTPUT or OPEN EXTEND statement.

125. A file described with a REPORT clause RPW

cannot be referenced by any input-output
statement except the OPEN or CLOSE
statement.

126. The SUPPRESS statement RPW

127. If no GENERATE statements have been RPW

executed for a report during the
interval between the execution of an
INITIATE statement and a TERMINATE

statement for that report, the
TERMINATE statement does not cause the

Report Writer Control System to

perform any of the related processing.

128. A USE procedure may refer to a RPW
DETAIL group.

XIV-27

Substantive Changes

SUBSTANTIVE CHANGE

129. FILE STATUS clause: data-name is

updated by the system at the com-
pletion of each input-output

operation.

130. ACCESS MODE IS DYNAMIC clause:

provides ability to access a file
sequentially or randomly in the
same program.

131. ALTERNATE RECORD KEY clause: allows

specification of multiple keys, any
of which can be used to access an
indexed file

132. ACTUAL KEY clause deleted.

133. RELATIVE KEY clause added for

relative organization.

134. RECORD KEY clause added for

indexed organization.

135. FILE-LIMITS clause deleted.

136. PROCESSING MODE clause deleted.

137. FILE-CONTROL paragraph: except for
the ASSIGN clause, the order of

clauses following file-name is
optional.

138. ORGANIZATION IS RELATIVE clause

139. ORGANIZATION IS SEQUENTIAL clause

140. ORGANIZATION IS INDEXED clause

141. MULTIPLE REEL/UNIT clause deleted.

142. RESERVE. . .ALTERNATE AREAS ■ deleted .

143. RESERVE integer AREAS to allow the
user to specify the exact number
of areas to be used.

144. The file description entry for file-
name must be equivalent to that used

when this file was created.

MODULE

AFFECTED
1 SEQ

1 REL
1 INX

1 INX

1 SEQ

1 REL

1 INX

1 REL 1 SEQ

1 INX

1 SEQ

1 REL

1 INX
1 SEQ

1 REL
1 INX

REMARKS

(1) New feature,

2 REL (1) New feature,
2 INX

2 INX (1) New feature,

(2)

1 REL (1) New feature.

(1) New feature,

(2)

(2)

(1)

(2) New feature.

(2) New feature.

(2) New feature.

(2)

(2)

(1) New feature.

(3) No such rule
X3. 23-1968.

XIV-28

Substantive Changes

SUBSTANTIVE CHANGE

145. The data-name option of the LABEL
RECORDS clause was deleted.

146. Data-name in the VALUE OF clause

must be an implementor-name.

147. LINAGE clause permits programmer
definition of logical page size.

148. CLOSE... FOR REMOVAL statement.

149. DELETE statement.

MODULE
AFFECTED

SEQ

REL
1 INX
1 SEQ

2 SEQ

2 SEQ

1 REL

1 INX

REMARKS

(2) X3. 23-1968 provided
for user-defined label
records .

(2) X3. 23-1968 provided
for user-defined field
in label records .

(1) New feature.

(1) New feature.

(1) New feature.

150.

151.

152.

153.

154.

155.

156.

157.

158.

OPEN REVERSED positions file at its
end.

OPEN INPUT or OPEN I-O makes a record
area available to the program.

OPEN EXTEND statement:

to an existing file.

adds records

The OPEN and CLOSE statements with the

NO REWIND phrase apply to all devices
that claim support for this function.

The OPEN REVERSED statement applies to
all devices that claim support for
this function .

READ statement: AT END phrase required

only if no applicable USE AFTER ERROR/
EXCEPTION procedure specified.

READ statement: INVALID KEY phrase

required only if no applicable USE
AFTER ERROR/ EXCEPTION procedure

specified.

READ statement:
Level 1 .

INTO phrase placed in

2 SEQ

1 SEQ

1 REL
1 INX
2 SEQ

2 SEQ

2 SEQ

1 SEQ

1 REL
1 INX

1 REL

1 INX

1 SEQ

1 REL
1. INX

READ... NEXT statement: used to retrieve 2 REL

the next logical record from a file
when the access mode is dynamic.

(2)

(1) New feature.

(1) New feature,

(1) X3. 23-1968 restricted
the application of this

phrase.

(1) X3. 23-1968 restricted
the application of this

phrase.

(1) New feature.

(1) New feature.

(1) Level 2 feature in
X3. 23-1968.

(1) New feature.

XIV-29

Substantive Changes

SUBSTANTIVE CHANGE

159. REWRITE statement

160. SEEK statement was deleted.

161. START statement: provides for logical
positioning within a relative or
indexed file for sequential retrieval
of records.

162. USE statement: the label, processing
options were deleted,

163. USE. . .ERROR/ EXCEPTION statement

164. Recursive invocation of USE procedures

prohibited.

165. WRITE statement: INVALID KEY phrase
deleted.

166. WRITE statement: INVALID KEY phrase

required only if no applicable USE
AFTER ERROR /EXCEPT ION procedure

specified .

167. WRITE statement: FROM phrase placed
in Level 1.

168. WRITE statement: BEFORE/AFTER PAGE

phrase provides ability to skip to
top of a page.

169. WRITE statement: END-OF-PAGE phrase

170. Debugging line: defined by a 'D'
in the continuation column.

171. WITH DEBUGGING MODE clause: a

compile time switch; in addition an
object time switch can be used to

suppress coding at object time.

172. USE FOR DEBUGGING statement.

173. DEBUG-ITEM

MODULE
AFFECTED

1 SEQ

1 REL
1 INX

2 REL

1 SEQ

1 REL
1 INX 1 SEQ

1 REL
1 INX
1 SEQ

1 REL
1 INX
1 SEQ

1 REL
1 INX

1 SEQ

1 REL
1 INX 1 SEQ

2 SEQ

1 DEB

1 DEB

REMARKS

(1) New feature.

(2)

(1) New feature.

(2) X3. 23-1968 provided
for the processing of
user-defined labels.

(1) New feature.

(2)

(2)

(1)

(1) Level 1 feature in
X3. 23-1968.

(1)

(1) New feature,

(1) New feature.

(1) New feature,

1 DEB

1 DEB

(1) New feature.

(1) New feature.

XIV- 30

Deleted Elements

MODULE
SUBSTANTIVE CHANGE AFFECTED

174. Linkage Section 1 IPC

175. Procedure Division header: the 1 IPC

USING phrase.

176. CALL identifier statement. 1 IPC

177. CALL identifier ON OVERFLOW statement. 2 IPC

178. CANCEL statement 2 IPC

179. EXIT PROGRAM statement 1 IPC

180. COPY statement may appear anywhere 1 LIB
a COBOL word may appear.

181. Identifier, COBOL word, or a group 2 LIB
of COBOL words may be replaced.

182. Multiple libraries are permitted. 2 LIB

183. Library-name is a user-defined word. 2 LIB

184. Communication description entry (CD) 1 COM

185. ACCEPT cd-name MESSAGE COUNT statement. 1 COM

186. ENABLE statement 1 COM

187. DISABLE statement 1 COM

188. RECEIVE statement 1 COM

189. SEND statement 1 COM

REMARKS

New feature,

New. feature ,

New feature,

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

New feature.

2.3.4 Elements Deleted From X3. 23-1968

The following elements were deleted from X3. 23-1968 in the process of

revising the standard." Page numbers refer to pages in the document X3. 23-1968.

REMARKS Paragraph (page 2-4) . The REMARKS paragraph of the Identification
Division was deleted and the function replaced by the * comment line.

EXAMINE Statement (pages 2-33 and 2-85) . The EXAMINE statement and the
special register TALLY were deleted in favor of the new more powerful
INSPECT statement.

NOTE Statement (pages 2-40 and 2-92) . The NOTE statement was deleted and
the function replaced by the * comment line.

XIV- 31

Excluded Elements

FILE-LIMITS Clause (pages 2-119 and 2-155). This clause was deleted from
the file control entry because the function could be handled better outside t

the COBOL program.

SEEK Statement (page 2-164) . This statement was redundant; it is implied
by the READ, WRITE, etc.

MULTIPLE REEL/UNIT Clause (page 2-119). This clause was deleted from the
file control entry because the function could be handled better outside the '
COBOL program.

ACTUAL KEY Clause (page 2-156) . This clause was replaced by the RELATIVE
KEY clause.

RESERVE integer ALTERNATE AREAS Clause (page 2-13A) . This clause was |
replaced by the RESERVE integer AREAS clause. f

OR implementor-nanie (page 2-138). This clause was deleted from the file
control entry because the function could be handled better outside the COBOL

program.

integer implementor-name (pages 2-119 and 2-155). This clause-was deleted
from the file control entry because the function could be handled better
outside the COBOL program.

■ PROCESSING MODE IS SEQUENTIAL Clause (pages 2-119 and 2-155). Tliis clause
was deleted from the file control entry as not being needed in a synchronous
environment . ,

j

USE... LABEL Statement (pages 2-150 and 2-180). An extensive revision to
label processing is currently unden^ay to remove ambiguities and provide for
the processing of ANSI standard labels. This work was not completed in time
to be included in this revision. In order not to hinder the introduction of

this new facility, it was decided to define only a minimum label processing
capability in the revised standard.

LABEL RECORDS IS data-name Clause (pages 2-141 and 2-17A) . An extensive
revision to label processing is currently underway to remove ambiguities and

provide for the processing of ANSI standard labels. This work was not
completed in time to be included in this revision. In order not to hinder
the introduction of this new facility, it was decided to define only a minimum
label processing capability in the revised standard.

2.3.5 JOD Elements Not Chosen- For Standardization

This list represents the language elements in the Journal of Development
at the cutoff date (December 31, 1971) which were not chosen for inclusion
in the revised standard. Many of these elements were previously excluded

from X3. 23-1968. An asterisk indicates those elements not available for

consideration at the time the original standard was specified. The symbol +

represents an element which was in X3. 23-1968 but was excluded from the
revised standard.

XIV-32

Excluded Elements

1. The figurative constants: UPPER-BOUND, UPPER-BOUNDS, LOWER-BOUND,
and LOWER-BOUNDS. !

2. In the SOURCE- COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE,
ADDRESS option, and implementor-name (s) .

3. In the OBJECT-COMPUTER paragraph, SUPERVISOR CONTROL, MEMORY SIZE
(ADDRESS option), implementor-name (s) , and ASSIGN OBJECT-PROGRAM.

4. In the file control entry, ORGANIZATION IS RELATIVE clause for files
referenced as the object of:

a. USING/GIVING phrase of a SORT or MERGE statement

b. file description entry containing the REPORT clause

5. In the file control entry, ORGANIZATION IS INDEXED clause for files
referenced as the object of:

a. USING/GIVING phrase of a SORT or MERGE statement

b. file description entry containing the REPORT clause

6. In the file control entry, the PROCESSING MODE clause.

■ 7. In the I-O-CONTROL paragraph, the APPLY clause.

8. In the I-O-CONTROL paragraph, an indexed or relative file may be
specified in the ON clause of RERUN.

9. In the I-O-CONTROL paragraph, an indexed or. relative file may be
specified in the END OF REEL/UNIT clause of RERUN.

+10. In the file description entry, the LABEL RECORDS IS data-name clause.

11. In the file description entry, the RECORDING MODE clause.

12. The saved area description entry.

13. In the PICTURE clause, the DEPENDING ON phrase and the character L.

14. In the USAGE clause, COMPUTATIONAL-n , DISPLAY -n, and INDEX-n.

15. The requirement of supporting more than five levels of qualification
for a data-name.

16. The complete set of qualifiers for a data-name may be the same as the
partial list of qualifiers for another data-name.

17. The relational operators: UNEQUAL TO, EQUALS, EXCEEDS.

18. In the COMPUTE statement, FROM and EQUALS.

19. In the DISPLAY statement, numeric literal may be signed and/or
noninteger .

XIV- 3 3

Excluded Elements

20. The HOLD statement.

*21. The INITIALIZE statement.

22. In Format 3 of the INSPECT statement, the BEFORE/AFTER REPLACING phrase.

23. In the MOVE CORRESPONDING statement, the identifier series.

2A. The PROCESS statement.

25. Dynamic redefinition of the collating sequence by means of the SET
statement .

26. In the STOP statement, numeric literal may be signed and/or noninteger.

*27. The SUSPEND statement.

+28. In the USE statement, the LABEL option.

*29. In the USE statement, the RANDOM PROCESSING option.

*30. In the USE statement, recursive invocation of USE procedures.

XIV-34

Concepts

3. APPENDIX C: CONCEPTS

3.1 FEATURES OF THE LANGUAGE

COBOL offers many features which allow the user to obtain a necessary

function without programming the function in detail. In this appendix each
of these features and the concept of its use will be discussed.

3.2 RECORD ORDERING

The ability to arrange records into a particular order is a common require-
ment of the data processing user. The Sort and Merge features of COBOL provide

facilities to assist in meeting this requirement.

While both are concerned with record ordering, the functions and capabil-
ities of the SORT and MERGE statements are different in a number of respects.

The Sort will produce an ordered file from one or more files that may be

completely unordered in the sort sequence whereas the Merge can only produce
an ordered file from two or more files each of which is already ordered in
the specified sequence.

In many applications it is necessary to apply some special processing to
the contents of the sort or merge file(s) before or after sorting or merging.
This special processing may consist of addition, deletion, creation, altering,
editing, or other modification of the individual records in the file. The

COBOL Sort-Merge feature allows the user to express these procedures in the
COBOL language. A COBOL program may contain any number of sorts and merges,

and each of them may have its own independent special procedures. The Sort-
Merge feature automatically causes execution of these procedures in such a
way that extra passes over the sort or merge files are not required.

3.3 REPORT WRITER

The Report Writer is a feature which places its emphasis on the organiza-
tion, format, and contents of an output report. Although a report can be

produced using the standard COBOL language, the Report Writer language .
features provide a more concise facility for report structuring and report
production. Much of the Procedure Division programming which would normally
be supplied by the programmer is instead provided automatically by the Report
Writer Control System (RWCS). Thus the programmer is relieved of writing
procedures for moving data, constructing print lines, counting lines on a

page, numbering pages, producing heading and footing lines, recognizing the
end of logical data subdivisions, updating sum counters, etc. All these
operations are accomplished by the RWCS as a consequence of source language
statements that appear primarily in the Report Section of the Data Division
of the source program.

Data movement to a report is directed by the Report Section clauses SOURCE,
SUM, and VALUE. Fields of data are positioned on a print line by means of the
COLUMN NUMBER clause. Tne PAGE clause specifies the length of the page, the
size of the heading and footing areas, and the size of the area in which the

detail lines will appear. Data items may be specified to form a control hier-
archy. During the execution of a GENERATE statement, the Report Writer Control

System uses the control hierarchy to check automatically for control breaks.. r

When a control break occurs, summary information (e.g. subtotals) can be presentedF^

XIV- 35

Concepts

3.4 TABLE HANDLING • ̂

Tables of data are conimon components of business data processing problems.

Although items of data that make up a table could be described as contiguous ^
data items, there are two reasons why this approach is not satisfactory.
First, from a documentation standpoint, the underlying homogeneity of the

items would not be readily apparent; and second, the problem of making avail-
able an individual elcBient of such a table would be severe when there is a

decision as to which element is to be made available at object time.

Tables composed of contiguous data items are defined in COBOL by including
the OCCUnS clause in their data description entries. This clause specifies

that the item is to be repeated as many times as stated. The item is consider-
ed to be a table element and its name and description apply to each repetition

or occurrence. Since each occurrence of a table element does not have assigned

to it a unique data-name reference to a desired occurrence may be made only
by specifying the data-name of the table element together with the occurrence
number of the desired table element. Subscripting and indexing are the two
methods that are used to specify the occurrence number of a desired table
element.

3.4.1 Table Definition

To define a one-dimensional table, the programmer uses an OCCURS clause as
part of the data description of the table element, but the OCCURS clause must
not appear in the description of group items which contain the table element.

Example 1 shows a one-dimensional table.

Example 1,

01 TABLE- 1.
02 TABLE- ELEMENT OCCURS 20 TIMES.

03 NAl-IE
03 SSAN

Defining a one-dimensional table within each occurrence of an element of

another one-dimensional table gives rise to a two-dimensional table. To
define a two-dimensional table, then, an OCCURS clause must appear in the data
description of the element of the table, and in the description of only one

group item which contains that table element. To define a three-dimensional
table, the OCCLTIS clause should appear in the data description of the element
of the table and in the description of 2 group items which contain the element.
In COBOL, tables of up to 3 dimensions are permitted. Example 2 shows a table

which has one dimension for CONTINENT-NAME, two dimensions for COUNTRY-NA>IE,
and three dimensions for CITY-NMIE and CITY-POPULATION. The table includes

100,510 data items ~ 10 for CONTINENT-NAME, 500 for COUNTRY-NAME, 50,000 for
CITY-NAME, and 50,000 for CITY-POPULATION. Within the table there are ten
occurrences of CONTINENT-NMIE . Within each CONTINENT-NAME there are 50

occurrences of COUNTRY-NAME and within each COUNTRY-NAME there are one
hundred occurrences of CITY-NAME and CITY-POPULATION.

XIV-36

Example 2.

01 CENSUS -TABLE.

05 CONTINENT-TABLE OCCURS 10 TIMES.
10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXK.
15 CITY-TABLE OCCURS 100 TIMES.

20 CITY-NAME PIC XXXXXXXXXX.
20 Cir^-POPULATION PIC 999999999999.

3.4.2 References to Table Items

Whenever the user refers to a table element, the reference must indicate

which occurrence of the element is intended. For access to a one-dimensional

table, the occurrence number of the desired element provides complete informa-
tion. For access to tables of more than one dimension, an occurrence number

must be supplied for each dimension of the table accessed. In Example 2 then,

a reference to the 4th CONTINENT- NAME would be complete, whereas a reference
to the 4th COUNTRY-NAl^IE would not. To refer to COUl-ITRY-NAME , which is an

element of a two-dimensional table, the user must refer to, for example ^ the
4th COUNTRY-NAME within the 6th CONTINENT- TABLE.

One method by which occurrence numbers may be specified is to append one

or more subscripts to the data-name. A subscript is an integer whose value
specifies the occurrence number of an element. The subscript can be repre-

sented either by a literal which is an integer or by a data-name which is
defined elsewhere as a numeric elementary item with no character positions to

the right of the assumed decimal point. In either case, the subscx-ipt,
enclosed in parentheses, is written immediately following the name of the
table element. A table reference must include as many subscripts as there are

dimensions in the table whose element is being referenced. That is, there
must be a subscript for each OCCURS clause in the hierarchy containing the

data-name, including the data-name itself. In Example 2, references to

CONTINENT-NAME requires only one subscript, reference to COUNTRY-NAICE requires
two, and references to CITY-NAME and CITY-POPULATION require three.

When more than one subscript is required, they are written in order of
successively less inclusive dimensions of the data organization. When a

data-name is used as a subscript, it may be used to refer to items in many
different tables. These tables need not have elements of the same size. The

data-name may also appear as the only subscript with one item and as one of
two or three subscripts with another item. Also, it is permissible to mix

literal and data-name subscripts, for example: CITY-POPULATION(10 , NEWKEY, 42).

Another method of referring to items in a table is indexing. To use this

technique, the programmer assigns one or more index-names to an item whose
data description contains an OCCURS clause. There is no separate entry to

describe the index-name since its definition is completely hardware- oriented
and it is not considered data per se. At object time the contents of the

index-name will correspond to an occurrence number for that specific dimension
of the table to which the index-name vjas assigned; however, the manner of
correspondence will be determined by the implementor. The initial value of

an index-name at object time is not determinable and the index-name must be
initialized by the SET statement before use.

XIV-37

Concepts

When a reference is made to a table element, or to an item within a table
element, and the name of the item is followed by its related index-name or
names in parentheses, then each occurrence number required to complete the
reference will be obtained from the respective index-name. The index-name
thus acts as a subscript whose value is used in any table reference that ^
specifies indexing.

When a reference requires more than one occurrence number for completeness,
the programmer must not use a data-name subscript to indicate one occurrence

number and an index-name for another. Therefore, if indexing is to be used,
each OCCURS clause within the hierarchy (each dimension of the table) must
contain an INDEXED BY clause. The programmer may, however, mix literals and.

index-names within one reference, just as he may mix literals and data-name
subscripts .

3.4.3 Table Searching

Data that has been arranged in the form of a table is very often searched.
In COBOL the SEARCH statement provides facilities, through its two options,

for producing serial and non-serial (for example, binary) searches. In using
the SEARCH statement, the programmer may vary an associated index-name or

data-name. This statement also provides facilities for execution of impera-
tive statements when certain conditions are true.

3.5 FILE ORGANIZATION AND ACCESS METHODS

Magnetic tape, punched paper tape, and punched card files are normally
organized in a sequential manner and the Procedure Division of COBOL reflects

this use. Mass storage media can be used to store sequentially organized
files, and this technique has been provided; but, more significantly, mass
storage devices have been designed to provide nonsequential organization and
access capabilities.

3.5.1 Sequential Organization

A file whose organization is sequential can only be accessed in the
sequential mode. Records in such a file can be accessed in the sequence

established as a result of writing the records to the file. A sequential
mass storage file may be used for input and output at the same time. One file
maintenance method made possible by this facility is to read a record, process
it, and, if it is updated, return it, modified, to its previous position.

3.5.2 Relative Organization

■ A file whose organization is relative can be accessed either sequentially
dynamically, or randomly. Sequential access provides the same results as if
the file were organized sequentially. Random access allows the sequence in
which the records are accessed to be controlled by the programmer. Each

record in a relative file is identified by an integer value greater than zero

which specifies the record's logical ordinal position in the file. The
desired record is accessed by placing its relative record number in a Relative
Key data item. Such a file may be thought of as a serial string of areas,
each capable of holding a logical record. Each of these areas is denominated
by a relative record number. Records are stored and retrieved based on this

XIV- 38

Concept's
number. For example, the tenth record is the one addressed by relative record

number 10 and is in the tenth record area, whether or not records have been
written in the first through the ninth record areas.

In the dynamic access mode, the programmer may change at will from sequen-
tial access to random access using appropriate forms of input-output statements

3.5.3 Indexed Organization

A file whose organization is indexed can be accessed either sequentially,

dynamically, or randomly. Sequential access provides access to the records
in the ascending order of the record key values. The order of retrieval of

records within a set of records having duplicate record key values is the
order in which the records were written into the set.

In the random access mode, the sequence in which records are accessed is
controlled by the programmer.. Each record in the file is identified by the
value of one or more keys within that record, and the desired record is

accessed by placing the value of its record key in a record key data item
before accessing the record.

In the dynamic access mode, the programmer may change at will from

sequential access to random access by using appropriate forms of input-output
statements.

3.6 RERUN

The RERUN feature of COBOL provides a facility for check restart. That is,

executing a RERUN takes a snapshot of the program status and stores the infor-
mation. It is then possible to restart the program from the point of the most

recent RERUN. The use of the RERUN clause protects the user from having to

start a program over from the beginning in the event of a hardware failure
while the job is running.

There are two basic parts to the RERUN clause. The user must designate a

medium to receive the data and a criterion from which the frequency of check-
points may be determined. The receiving medium may be specified by designating

a file name or a separate hardware device. The determination of frequency of
the dump may be made on the basis of a number of records of a particular file

having been processed, of the end of a reel of a particular file having been
reached, of the setting of a hardware switch or of a specified num.ber of units
of . an internal clock having been counted.

3.7 PROGRAM MODULARITY

Complex data processing problems are frequently solved by the use of
separately compiled but logically coordinated programs, which, at execution
time, form logical and physical subdivisions of a single run unit. This

approach lends itself to dividing a large problem into smaller, more manage-
able segments which can be programmed and debugged independently. At execute

time, control is transferred from program to program by the use of CALL and
EXIT PROGRAM statements.

XIV- 39

Concepts

Under certain circumstances, e.g., a shortage of computer storage, it is
desirable to subdivide a single program into physical segments, so that, at
execute time, it is not necessar>' to load the entire program into computer

storage at one time. This approach would permit the overlaying of some seg- '
ments, with a corresponding saving in total computer storage required to
execute the program. This facility is called segmentation.

There are no special statements in COBOL for communication between segments

of such a program. There are, however, some special clauses used by the COBOL
programmer to specify how the object program is to be segmented.

3.7.1 Inter-Program Communication

In COBOL terminology, a program is either a source program or an object
program depending on context; a source program is a syntactically correct set
of COBOL statements; an object program is the set of instructions, constants,

and other machine-oriented data resulting from the operation of a compiler on
a source program; and a run unit is the total machine language necessary to
solve a data processing problem. It includes, one or more object programs as
defined above, and it may include machine language from sources other than a
COBOL compiler.

Wlien the statement of a problem is subdivided into more than one program,
the constituent programs must be able to communicate with each other. This
communication may take two forms: transfer of control and reference to common
data.

3.7.1.1 Transfer of Control

The CALL statement provides the means whereby control can be passed from

one program to another V7ithin a run unit. A program that is activated by a
CALL statement may itself contain CALL statem.ents. However, results are

unpredictable where circularity of control is initiated ; i . e . , where program
A calls program B, then program B calls program A or another program that
calls program A.

When control is passed to a called program, execution proceeds in the normal
way from procedure statement to procedure statement beginning with the first

nondeclarative statement. If control reaches a STOP RUN statement, this sig-
nals the logical end of the run unit. If control reaches an EXIT PROGRAM

statement, this signals the logical end of the called program only, and control

then reverts to the point immediately following the CALL statement in the call-
ing program. Stated briefly, the EXIT PROGRAM statement terminates only the

program in which it occurs , and the STOP RUN statemenet terminates the entire
run unit.

If the called program is not COBOL then the termination of the run unit or

the return to the calling program must be programmed in accordance with the
language of the called program.

XIV-40

Concepts

3.7.1.2 Inter-Program Data Storage

Program interaction requires that both programs have access to the same
data items. In the calling program the common data items are described along

with all other data items in the File Section, Working-Storage Section,
Communication Section, or Linkage Section. At object time memory is allocated
for the entire Data Division. In the called program, common data items are
described in the Linkage Section. At object time memory space is not allocated
for this section. Communication between the called program and the common data
items stored in the calling program is effected through USING clauses contained
in both programs. The USING clause in the calling program is contained in the

CALL statement and the operands are a list of comm.on data-identifiers described
in its Data Division. The USING clause in the called program follows the
Procedure Division header and the operands are a list of common data identifiers

described in its Linkage Section. The identifiers specified by the USING clause
of the CALL statement indicate those data items available to a calling program
that may be referred to in the called program. The sequence of appearance
of the identifiers in the USING clause of the CALL statement and the USING

clause in the Procedure Division header is significant. Corresponding identi-
fiers refer to a single set of data which is available to the calling program.

The correspondence is positional, and not by name. T-JhiLe the called program
is being executed, every reference to an operand whose identifier appears in

the called program's USING clause is treated as if it were a reference to the
corresponding operand in the USING clause of the active CALL statement.

Once control leaves a called program its state is maijntained until a CANCEL

is executed naming that program. Therefore, initialization of the program in
case of repetitive calls is not necessary.

Execution of the CANCEL statement allows the user to indicate that the

memory' areas occupied by the called progran(s) may be released. In addition,
the CANCEL guarantees that the program cancelled will be in its initial state
when called by a subsequent CALL statement.

3.7.2 Segmentation

The segmentation facility permits the user to subdivide physically the
Procedure Division of a COBOL object program. All source paragraphs which

contain the same segment-number in their section headers will be considered

at object time to be one segment. Since segment-numbers can range from GO
through 99, it is possible to subdivide any object program into a maximum of
100 segments.

Program segments may be of three types: fixed permanent, fixed overlayable,

and independent as determined by the programer's assignment of segment numbers.

Fixed segments are always in computer storage during the execution of the
entire program, i.e., they cannot be overlayed except when the system is

executing another program, in which case fixed segments may be 'rolled out'
temporarily .

Fixed overlayable segments may be overlayed during program execution, but
any such overlaying is transparent to the user, i.e., they are logically
identical to fixed segments, but physically different from them.

XIV-41

Concepts

Independent segments raay be overlayed, but such overlaying will result in
the initialization of that segment. Therefore, independent segments are
logically different from fixed permanent/fixed overlayable segments, and
physically different from fixed segments.

3.8 COMMUNICATION FACILITY

The communication facility provides the ability to access, process, and
create messages or portions thereof. It provides the ability to communicate
through a Message Control System with local and remote coimnuni cation devices.

3.8.1 The Message Control System

The implementation of the communication facility requires that a Message

Control System (MCS) be present in the COBOL object program's operating envi-
ronment.

The MCS is the logical interface to the operating system under which the
COBOL object program operates. The primary functions of the MCS are the
following:

(1) To act as an interface between the COBOL object program and- the network
of communication devices, in much the same manner as an operating system acts
as an interface between the COBOL object program and such devices as card

readers, magnetic tape and mass storage devices, and printers.

(2) To perform line discipline, including such tasks as dial-up, polling,
and synchronization.

(3) To perform device-dependent tasks, such as character translation and
insertion of control characters, so that the COBOL user can create device-
independent programs.

The first function, that of interfacing the COBOL object program with the
communication devices, is the most obvious to the COBOL user. In fact, the
COBOL user may be totally unaware that the other two functions exist. Messages
from communication devices are placed in input queues by the MCS while awaiting

disposition by the COBOL object program. Output messages from the COBOL object
program are placed in output queues by the MCS while awaiting transmission to
communication devices. The structures, formats, and symbolic names of the

queues are defined by the user to the MCS at some time prior to the execution

of the COBOL object program. Symbolic names for message sources and destina-
tions are also defined at that time. The COBOL user must specify in his COBOL

program symbolic names which are known to the MCS.

During execution of a COBOL object program, the MCS performs all necessary
actions to update the various queues as required.

3.8.2 The COBOL Object Program

The COBOL object program interfaces with the MCS when it is necessary to
send data, receive data, or to interrogate the status of the various queues
which are created and maintained by the MCS. In addition, the COBOL object

program may direct the MCS to establish or break the logical connection

XIV- A 2

Conoepts

between the communication device and a specified portion of the MCS queue
structure. The method of handling the physical connection is a function of
the MCS.

3.8.3 Relationship of the COBOL Program to the Message Control System
and Communication Devices

The interfaces which exist in a COBOL communication environment are esta-
blished by the use of a CD and associated clauses in the Communication Section

of the Data Division. There are two such interfaces:

(1) The interface between the COBOL object program and the MCS, and;

(2) The interface between the MCS and the communication devices.

The COBOL source program uses three statements to control the interface
with the MCS: !

(1) The RECEIVE statement, which causes data in a queue to be passed to
the COBOL object program,

(2) The SEND statement, which causes data associated with the C^OBOL object
program to be passed to one or more queues, and;

(3) The ACCEPT statement with the COUNT phrase, which causes the MCS to

indicate to the COBOL object program the number of complete messages in the
specified queue structure.

The COBOL source program uses two statements to control the interface
between the MCS and the communication devices:

(1) The ENABLE statement, which establishes logical connection between
the MCS and one or more given communication devices, and;

(2) The DISABLE statement, which breaks a logical connection between the
MCS and one or more given communication devices.

These relationships are shown in Figure 1, COBOL Communication Environment,

which is located on page XIV-44.

XIV-43

Concepts

3.8.3.1 Invoking the COBOL Object Program

There are two methods of invoking a COBOL communication object program:

(1) Schedule initiation

(2) MCS invocation

Regardless of the method of invocation, the only operating difference
between the two methods is that MCS invocation causes the areas referenced

by the symbolic queue and subqueue names in the specified CD to be filled.

3.8.3.1.1 Scheduled Initiation of the COBOL Object Program

A COBOL object program using the communication facility may be scheduled

for execution through the normal means available in the program's operating
environment, such as job control language. In that case, the COBOL program
can use three methods to determine what messages, if any, are available in
the input queues :

(1) The ACCEPT statement with the COUNT phrase,

(2) The RECEIVE statement with a NO DATA phrase, and

(3) The RECEIVE statement without a NO DATA phrase (in which case a program
wait is implied if no data is available) .

XIV-A4

Concepts

3.8.3.1.2 Invocation of the COBOL Object Program by the MCS

It is sometimes desirable to schedule a COBOL object communication program
only when there is work available for it to do. Such scheduling occurs if the
MCS determines what COBOL object program is required to process the available
message and subsequently causes that program to be scheduled for execution.

Prior to the execution of the COBOL object program, the MCS places symbolic

queue and sub-queue names in the data items of the CD that specifies the FOR
INITIAL INPUT clause.

A subsequent RECEIVE statement directed to that CD will result in the
available message being passed to the COBOL object program.

3.8.3.1.3 Determining the Method of Scheduling

A COBOL source program can be written so that its object program can
operate with either of the two modes of scheduling. In order to determine

which method was used to load the COBOL object program, the following is one
technique that may be used:

(1) One CD must contain a FOR INITIAL INPUT clause.

(2) Tne Procedure Division may contain statements to test the initial

value of the symbolic queue name in that CD. If it is space-filled, job
control statements were used to schedule the COBOL object program. If not
space filled, the MCS has invoked the COBOL object program and replaced the
spaces with the symbolic name of the queue containing the message to be
processed.

3.8.4 The Concept of Messages and Message Segments

A message consists of some arbitrary amount of information, usually char-
acter data, whose beginning and end are defined or implied. As such, messages

comprise the fundamental but not necessarily the most elementary unit of data
to be processed in a COBOL communication environment.

Messages may be logically subdivided into smaller units of data called
message segments which are delimited within a message by means of end of
segment indicators (ESI) . A message consisting of one or more segments is
delimited from the next message by means of an end of message indicator (EMI) .
In a similar manner, a group of several messages may be logically separated
from succeeding messages by means of an end of group indicator (EGI) . When a
message or message segment is received by the COBOL program, a communication
description interface area is updated by the MCS to indicate which, if any,
delimiter was associated with the text transferred during the execution of

that RECEIVE statement. On output the delimiter, if any, to be associated
with the text released to the MCS during execution of a SEND statement is
specified or referenced in the SEND statement. Thus the presence of these

logical indicators is recognized and specified both by the MCS and by the
COBOL object program; however, no indicators are included in the message text
processed by COBOL programs.

A precedence relationship exists between the indicators EGI, EMI and ESI.
EGI is the most inclusive indicator and ESI is the least inclusive indicator.

The existence of an indicator associated with message text implies the

XIV-45

Concepts

association of all less inclusive indicators with that text. For example, the
existence of the EGI implies the existence of EMI and ESI.

3.8.5 The Concept of Queues ,

Queues consist of one or more messages from or to one or more communication

devices, and as such, form the data buffers between the COBOL object program
and the MCS . Input queues are logically separate from output queues.

The MCS logically places in queues or removes from queues only complete
messages. Portions of messages are not logically placed in queues until the
entire message is available to the MCS. That is, the MCS will not pass a

message segment to a COBOL object program unless all segments of that message
are in the input queue, even though the COBOL source program uses the SEGMENT

phrase of the RECEIVE statement. For output messages, the MCS will not trans-
mit any segment of a message until all its segments are in the output queue.

The number of messages that exist in a given queue reflects only the number of
complete messages that exist in the queue.

The process by which messages are placed into a queue is called enqueueing.
The process by which messages are removed from a queue is called dequeueing.

3.8.5.1 Independent Enqueueing and Dequeueing

It is possible that a message may be received by the MCS from a communica-
tion device prior to the execution of the COBOL object program. In this case

the MCS enqueues the message in the proper input queue until the COBOL object
program requests dequeueing with the RECEIVE statement. It is also possible
that a COBOL object program will cause the enqueueing of messages in an output

queue which are not transmitted to a communication device until after the
COBOL object program has terminated. Two common reasons for this occurrence
are :

(1) l\Fhen data transfer between the specified output queue and its destina-
tion is inhibited.

(2) When the COBOL object program creates output messages at a speed
faster than the destination can receive them.

3.8.5.2 Enabling and Disabling Logical Connectives

Usually, the MCS will logically connect and disconnect sources and destina-
tions based on time of day, message activity, or other factors unrelated to

the COBOL program. However, the COBOL program has the ability to perform
these functions through use of the ENABLE and DISABLE statements.

A key is required in both statements in order to prevent indiscriminate
use of the facility by a COBOL user who is not aware of the total network

environment, and who may therefore disrupt system functions by the untimely
issuance of ENABLE and DISABLE statements. However, this action never
interrupts a transmission.

XIV-46

Concepts

3.8.5.3 Enqueueing and Dequeueing Methods

In systems that allow the user to specify certain MCS fuiictions, it may be
necessary that the user specify to the MCS, prior to execution of programs
which reference these facilities, the selection algorithm and other designated
MCS functions to be used by the MCS in placing messages in the various queues.
A typical selection algorithm, for example, v/ould specify that all messages
from a given source be placed in a given input queue, or that all messages
to be sent to a given destination be placed in a given output queue.

Dequeueing is often done on a first in, first out basis. Thus, messages
dequeued from either an input or output queue are those messages which have
been in the queue for the longest period of time. Rowever , the MCS can, upon

prior specification by the user, dequeue on some other basis, i.e., priority
queueing can be employed.

3.8.5.4 Queue Hierarchy

In order to control more explicitly the messages being enqueued and dequeued,
it is possible to define in the MCS a hierarchy of input queues, i.e., queues
comprising queues. In COBOL, four levels of queues are available to the user.
In order of decreasing significance, the queue levels are named qugue,

sub-queue-1, sub-queue-2 and sub-queue-3. The full queue structure is
depicted in Figure 2, Hierarchy of Queues, where queues and sub-queues have
been named with the letters A through 0. Messages have been named with a
letter according to their source (X, Y, or Z) and with a sequential number.

QUEUE

SUB-QUEUE (1)

SUB-QUEUE (2)

SUB-QUEUE (3)

MESSAGE

D

H 1 J K L M N

Z1
X3

XI
Z6

Y7
Y1 X6

X2
X4 Y3 Z7 Y8 Y2
X5 Y5

Y6

Z5

0

Z2
Z3
Z4 Y4

Figure 2: Hierarchy of Queues

Let us assume that the MCS is operating under the following queueing
algorithm:

(1) Messages are placed in queues according to the contents of some
specified data field in each message.

XIV-47

Concepts

(2) With the RECEIVE statement, if the user does not specify a given sub-

queue level, the MCS vjill choose the sub-queue from that level in alphabetical
order, e.g., if sub-queue-1 is not specified by the user, the MCS will dequeue
from sub-queue-1 E.

The following examples illustrate the effect of the algorithms shown in

Figure 2 on pageXIV-47:

(1) The program executes a RECEIVE statement, specifying via the CD:

Queue A

MCS returns: Message Zl

(2) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-1 C

MCS returns: Message Y7

(3) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-1 B

Sub-queue-2 E

MCS return's: Message XI

(4) The program executes a RECEIVE statement, specifying via the CD:

Queue A

Sub-queue-1 C

Sub-queue-2 G

Sub-queue-3 N

MCS returns: Message X6

If the COBOL programmer wishes to access the next message in a queue,

regardless of which sub-queue that message may be in, he specifies the queue
name only. The MCS, when supplying the message, will return to the COBOL

object program, any applicable sub-queue names via the data items in the
associated CD. If, however, he desires the next message in a given sub-queue,
he must specify both the queue name and any applicable sub-queue names.

For output, the COBOL user specifies only the destination(s) of the message,
and the MCS places the message in the proper output queue structure.

There is no one-to-one relationship between a communication device and a
source/destination. A source or destination may consist of one or more
physical devices. Tlie device or devices which comprise a source/destination
are defined to the MCS.

XIV-48

3.9 DEBUGGING

To assist in error detection, COBOL provides the facility to monitor,

during program execution:

(1) transfers of control to user selected procedures and

(2) values of user selected data items.

The user statements required to accomplish this monitoring are included

in the source program and can be compiled or not according to the presence
or absence of one clause in the source program. Once compiled into the

program, these statements may be executed or ignored at run time according

to the setting of a run- time switch.

3.10 LIBRARY

The library feature provides the facility to copy source text from a

"library" of source text material that is available at compile time. A short
phrase can cause inclusion of large amounts of source library material into
the source program, thus saving repetitious coding. Once established, a

source library may be referenced many times by many programs.

XIV-49

Index

INDEX

'A' PICTURE sycbol, 11-20
Abbreviated combined relauion conditions,

11-47
ACCEPT MESSAGE COUNT stateinent, XIII-12

USE FOR DEBUGGING statement, XI-7
ACCEPT statement, 11-53

Imperative stateinent, 1-102
Mnemonic-naae , II-9
SPECIAL-NAMES paragraph, II-9

ACCESS MODE clause

DYNAMIC, V-5, VI-5
RANDOM, V-5, Vl-5
SEQUENTIAL, IV-4 , V-5, VI-5

Access modes, IV-1, V-1, VI-1
ADD statement, 11-55

Composite of operands, 11-51
COl-lPUTE statement, 11-58
Conditional statement, I-lOl
CORRESPONDING (CORR) , 11-55
Data conversion, 11-51
Decimal alignment, 11-51
Imperative statement, 1-102
Maximum operand size, 11-51
Multiple results, 11-51

ADD CORRESPONTIING (ADD CORR) statement,
11-55

ADVANCING phrase, IV- 34, XIII-20
AFTER phrase

INSPECT statement, 11-68
PERFORM statement, 11-78
SENT) statement, XIII-20

• WRITE statement, IV-34
Algebraic sign, 1-86
Alignment of data, 1-86

ACCEPT statement, 11-53
MOVE statement, 11-74

ALL
INSPECT statement, 11-68
SEARCH statement, III-7
USE FOR DEBUGGING statement, XI-4

ALL literal, 1-81
DISPLAY statement, 11-59
INSPECT statement, 11-69
STOP statement, 11-85
STRING statement, 11-86
UNSTRING stateinent. 11-91

ALL PROCEDURES phrase, XI-4, XI-5
ALL REFERENCES OF phrase, XI-4, Xl-5,

XI-6
Alphabet-name, 1-52, 1-77

CODE-SET clause, IV-12
MERGE statement, VII-8
SORT statement, VII-14

Alphabet-name clause, II-9
Alphabetic category, 1-85, 11-18, 11-75
Alphanumeric character, 1-85
Alphabetic class, 1-85, 11-43

Alphanumeric edited category, 1-85
11-19, 11-75

ALSO phrase, 11-8
ALTER statement, 11-57

GO TO statement, 11-65
Imperative statement, 1-102
MERGE statement, VII-10
Segmentation, IX-6
SORT statement, VII-16
USE FOR DEBUGGING statement, XI-5,

XI- 8 ALTERNATE RECORD KEY clause, VI-1, VI-5

AND, 11-45 Abbreviated combined relation

condition, 11-47
Combined condition, 11-46
Connective, 1-79
Hierarchy, 11-48
Negated combined condition, 11-46
SEARCH statement, III-7

Area B, 1-105
Arithmetic expression, 11-39

COMPUTE statem.ent, 11-58
Relation condirion, 11-41
Sign condition, 11-44

Arithmetic operator, 11-39
Arithmetic statements, 11-51
ASCENDING KEY phrase

MERGE statement, VII-8
OCCURS clause, III-2
SEARCH statement, III-9
SORT statement, VII-14

ASSIGN clause
Indexed I-O module, VI-5
Relative 1-0 module, V-5
Sequential I-O module, IV-4
Sort-Merge module, VII-2

Asterisk (*) comment line, 1-108
Asterisk (*) PICTURE symbol, 11-21
AT END condition, IV-3, V-4, VI-4

READ statement, IV-29, V-24, VI-26
RETURN statement, VII- 13
Status key, IV-2, V-2, VI-2
USE statement, IV-32, V-30, VI-32

AT END phrase
READ statement, IV-29, V-24, VI-26
RETURN statement, VII-13
SFJ^RCH statement, III-7
USE statement, IV-32, V-30, VI-32

AUTHOR paragraph, 1-94, II-2

'B' PICTLTIE symbol, 11-20
BEFORE phrase

INSPECT statement, 11-63
SEND statement, XIII-20
WRITE statement, IV-34

Binary arithmetic operators, 11-39

XV-1

Index

BLANK WHEN ZERO clause, 11-14
PICTURE clause, 11-18
USAGE IS INDEX clause, III-5
VALUE clause, 11-37

BLOCK CONTAINS clause
Indexed I-O module, VI-13
Relative 1-0 modulo, V-12
Report Writer module, VIII-24
Sequential 1-0 module, IV-11

Body group presentation rules table,
VIH-15

Braces, 1-73
Brackets, 1-73
BY

COPY statement, X-2
DIVIDE statement, 11-61 .
INSPECT statement, 11-68
MULTIPLY statement, 11-77
PERFORM statement, 11-78

CALL statement, XII-5
CANCEL statement, XII-7
Imperative statement, 1-102
Linkage Section, XII-2
Procedure Division header, XII-4

Called program, 1-53
Calling program, 1-53
CANCEL statement, XII-7

CALL statement, XII-5
CLOSE statement, VI-19
EXIT program statement, XII-8
Imperative st-dtement, 1-102

Category of data, 1-85
Editing, 11-22
MOVE statement, 11-75
Nonnumeric literal, 1-80
Numeric literal, 1-80
PICTURE clause, 11-18
VALUE clause, 11-36, 11-37

Category of statements, 1-103
CD entry, XI II- 3
CD level indicator, 1-107, XIII-3
Cd-narae, 1-77, XIII-3
OF (See CONTROL FOOTING)
CH (See CONTROL HEADING)
Character, 1-75

Alphabetic, 1-52
Alphanumeric, 1-52
Editing, 1-58
Numeric, 1-63
Punctuation, 1-65, 1-73^ 1-75
Relation, 1-66
Special, 1-70

Character representation, 1-85
Character set, 1-75
Character-string, 1-76
Character substitution, 1-75
CHARACTERS

OBJECT-COMPUTER paragraph, II-6
BLOCK CONTAINS clause, IV-11
RECOPD CONTAINS clause, IV- 18

Class condition, 11-43
Class of data, 1-85

Incompatible, 11-52
Clause, 1-53, 1-72, 1-107

CLOSE statement
AT END condition, IV-30, V-25, VI-26
Imperative statement, 1-102
Indexed 1-0 module, VI- 18
1-0 status, IV-2, V-2, VI-2
OPEN statement, IV-25, V-2 1 , VI-22
READ statement, IV-30, V-25, VI-26
Relative 1-0 module, V-17
Report Writer module, VIII-1
Sequential 1-0 module, IV-20
TERMINATE statement, VIII-55
USE FOR DEBUGGING statement, XI-5

COBOL character set, 1-54, 1-75
COBOL development, XIV- 1
COBOL Journal of Development, XIV-2
COBOL word, 1-76

CODASYL, XIV-1
CODE clause, VIII-25
CODE-SET clause

Report V/riter module, VIII-26
Sequential 1-0 module, IV-12

COLLATING SEQUENCE-.clause , II-6
COLLATING SEQUENCE phrase

MERGE statement, VI 1-8
SORT statement, VII-14

COLUMN NUMBER clause, VIII-27
Combined condition, 11-46
Comma, 1-73

Connective, 1—79
DECIMAL-POINT IS COMMA clause, II-8
Identifier, 1-90
Indices, 1-90
Interchangeable with semicolon, 1-73 1-74

Library text-word, X-3
PICTURE symbol, 11-21
Restriction, II-l
Series connective, 1-79

Separator, 1-75
Subscripts, 1-89

Comment-entry, 1-8:2, II-2
DATE-COMPILED paragraph, II-4

Comment line, I-IOS
Debugging line, XI-9
Library text, X-4
WITH DEBUGGING liODE clause, XI-3

Communication description entry, 1-54
1-98, XIII-3

Communication module, XIII-1
Communication Section, XIII-2

COMP, 11-35
Compiler directing sentence, I-lOl
Compiler directing statement, I-lOl
Complex condition,, 11-45
Composite language skeleton, I-lll
COMPUTATIONAL (COKtP) , 11-35
COMPUTE statement, 11-58

Composite of operands, 11-51
Conditional statement, I-lOl
Data conversion, 11-51
Decimal alignment, 11-51
Imperative statement, 1-102
Maximum operand size, II-5I

■ Multiple results-, 11-51
Computer-name, II-5, II-5

XV-2

Index

Concepts, XIV- 35
Condition, II-Al

Abbreviated combined relation

condition, 11-47
Class condition, II-A3
Combined condition, II-A6
Complex condition, 11-45
Condition-name condition, II-A4
Evaluation rules, II-A8
IF statement, 11-66
Negated combined condition, II-A6
Negated simple condition, II-A5
PERFORM UNTIL statement, 11-78, 11-80
Relation condition, 11-41
SEARCH statement, 1II-7
Sign condition, II-A4
Simple condition, II-Al
SIZE ERROR condition, 11-50
Switch-status condition, II-AA

Condition-name, 1-77, 1-91
Indexed, 1-90
Level-number 88, I-8A, 11-17
Qualified, 1-88
REDEFINES clause, 11-28
RERUN clause, IV-6, V-7, VI-8
SEARCH statement, III-7
SPECIAL-NAMES paragraph, II-8
Subscripted, 1-89
VALUE clause, 11-36 ■■ ■

Condition-name condition, II-AA
Condition-name data description entry,

H-12, 11-37
Conditional expression, II-Al
Conditional sentence, I-lOl
Conditional statement, I- 101
Conditional variable, 1-55, II-AA
Configuration Section, 1-95
Connective, 1-79

Logical, 1-79, II-A5
Qualifier, 1-79
Restriction, II-l
Series, 1-79

Continuation line, 1-106
Continuation of lines, 1-106

Comment-entries, II-2, II-A
Comment lines, 1-108
Debugging lines, XI-10
Library pseudo-text, X-2
Restriction, II-l

Continued line, 1-106
CONTROL clause, VIII-28
Control break

CONTROL clause, VIII-28
GENERATE statement, VIII-51
GROUP INDICATE clause, VIII-31
TYPE clause, VIiI-A6

CONTROL FOOTING (CF) , VIII-6, VIII-A5
Body group presentation rules,

VIII-13, VIII-18, VIII-19
Presentation rules table, VlII-9

CONTROL HEADING (CH) , VIII-6, VIII-A5
Body group presentation ru3.es,

VIII-15, VilI-18, VIII-19
Presentation rules table, VIII-9

COPY statement, X-2
Compiler directing statement, I- 101

CORR, II-7A, 11-89
CORRESPONDING (CORR) phrase, 11-51

ADD statement, 11-55
MOVE stateajent, 11-74
SIZE ERROR phrase, 11-50
SUBTRACT statement, 11-89

CR PICTURE syicbol, 11-21
Crossfooting, YIII-43, VIII-A8
Currency PICTURE symbol, 11-21
Currency sign, 1-56, 11-10, 11-21
CURRENCY SIGN clause, II-8, 11-10, 11-21
Currency symbol, 1-56, 11-10, 11-21
Current record pointer

DELETE statement, V-19, VI-20
Indexed I-O module, VI-2
OPEN statement, IV-26, V-22, VI-22
READ state:iaent, IV-28, V-23, VI-25
Relative I-O module, V-2
REWRITE statement, IV-31, V-27, VI-28
Sequential 1-0 module, IV-1
START statement, V-28, VI-31
WRITE statement, VI-33, V-32, VI-33

Data description entry, 1-57, 11-12
Linkage Section, XII-2
Working-Storage Section, '11-11

Data Division, 1-97 - ■ - ■ 5
Communication module, XIII-2
Indexed I-O module, VI- 11
Inter-Program Communication module ,

XII-2 Nucleus, 11-11
Reference format, 1-107
Relative I-O module, V-10
Report Writer module, VIII-2
Sequential J-0 module, IV-9
Sort-Merge module, VII-5
Table Handling module, III-2

Data-name, 1-77, 11-15, VIII-30
Identifier, 1-90

Indexed, 1-90
Qualified, 1-88
Restrictiott, II-l
Subscripted!, 1-89

DATA RECORDS clause

Indexed I-O module, VI- lA
Relative I-<® module, V-13
Sequential I-O module, IV-1 3
Sort-Merge nnodule, VII-6

DATE, 11-53
DATE-COMPILED paragraph, II-A
DATE-WRITTEN paragraph, II-2

DAY, 11-53
DB PICTURE symibol, 11-21
DE (See DETAIL)
DEBUG-CONTENTS , XI-7
DEBUG-ITEM, XI- 1, XI-5, XI-7
DEBUG-LINE, XI-7

Debug module, XI- 1
DEBUC-NAME, XI-7
DEBUG-SUB-1, XI-7
DEBUG-SU3-2, XI-7
DEBUG-SUB-3. Xl-7

Debugging line, XI-10
Library text, X-A

XV~3

1 ndeo:

DEBUGGING MODE clause, XI-3
CoT.pilc tiniG switch, XI-1
Debugging lines, XI-10

Debugging section, XI-4
Decimal point

Actual, 11-21
Alignment, 1-86
Assumed, 11-20

DECIMAL POINT IS COMMA clause, II-8
11-10, 11-21

Declarative-;.entence , 1-57, 1-100
Declaratives, 1-99

Reference formt, I- 100, 1-108
Segmentn tion , TX-4
USE BEFOR!'; KEPOiU'lNG statement, VIII-56
USE FOR DEBUGGING statement, XI-4
USE statement, IV-32, V-30, VI-32

Definitions, 1-52
DELETE statement

Indexed I-O module, VI-20
OPEN mode, V-21, VI-22
Relative 1-0 r.iodule, V-19
USE FOR DEBUGGING statement, XI-5

Delimiters
Character-string, 1-76
Pseudo-text, 1-65, 1-76

DEPENDING phrase
GO TO statement, 11-65
OCCURS clause, III-2

DESCENDING KEY phrase
MERGE statement, VII-8
OCCURS clause, IIT-2
SORT stater.ient, VII- 14

DESTINATION COUNT clause, XIII-3, XIII-6
DESTINATION TABLE OCCURS clause, XIII-3,

XIII-6
DETAIL (DE) , VIII-45
DIS/iBLE statement, XI 1 1- 13

USE FOR DEBUGGING statement, XI-6
DISPLAY in USAGE clause, 11-35
DISPLAY statement, 11-59

Figurative constant, 1-82
Imperative statement, 1-102
Mnemonic-name, II-9
SPECIAI.-NAMES paragraph, II-9

DIVIDE statement, 11-61
Composite of operands, 11-51
COMPUTE statement, 11-58
Conditional statement, I- 101
Data conversion, 11-51
Decimal alignment, 11-51
Imperative statement, 1-102
Maximum operand size, 11-51
Multiple- results, 11-51
SIZE ERROR phrase, 11-50

Division, 1-57, 1-105
Format, 1-106

Division header, 1-58, 1-106
DOWN BY, III- 11
DUPLICATES phrase, VI-5

EDMA TC6, XIV- 10
Editing characters, 1-58
Editing rules, 11-21
Editing sign, 1-86
EGl, XIII-20

Elementary Ito^i, 1-84
Noncontiguous, Il-li

Elements, 1-72
Ellipsis, 1-73
ELSE clause, Ii-66

EMI, XIII-20
ENABLE statement, XIII-15

USE FOR DEBUGGING statement, XI-6
END DECLAR.'^TIVcIS, 1-99, 1-108
END KEY clause, XIlI-3, XIIl-5
End of group indicator (EGI) , XIII-22
End of message indicator (EMI) , XIII-22
END-OF-PAGE phrase, IV- 34
End of segment indicator (ESI) , XIII-22
ENTER COBOL statement, 11-63
ENTER statement, 11-63
Entry, 1-58
Environment Division, 1-95

Debug module, XI-3
Indexed 1-0 module, VI-5

, Nucleus, II-5
Relative 1-0 module, V-5
Segmentatioa module, IX-5
Sequential 1-0 module, IV-4
Sort-Merge module, VII-2

EQUAL TO relation, 11-41, II-'42 EOP phrase, IV-34
ERROR KEY clause, XIII-3, XIII-6

ESI, XIII-20 Execution, 1-99
EXIT statement, 11-64

Inperative statement, 1-102
EXIT PROGRAM sts.tmenL, XII-8

CALL statement, XII-6
CANCEL stateEisnt, XII-7

Explicit, 1-91
Exponentiation, 11-39

FD level indicator, 1-107
Indexed 1-0 -odule, VI-12
Relative 1-0 i.iodule, V-11
Report Writer module, VIII-3
Sequential 1-0 module, IV- 10

Figurative constant, 1-79, 1-80, 1-81
DISPLAY statement, 11-59
INSPECT state^iMnt, 11-69
Restriction, II-l
STOP statement, 11-85
STRING statement, 11-86, 11-87
UNSTRING stat.t-inent, 11-91
VALUE clause,. TI-37
VALUE OF clau.se. IV-19, VI-17, VHI-50

File control entxy, 1-96
Indexed 1-0 module, VI-5
Relative 1-0 imodule, V-5
Sequential I— D module, IV-4
Sort-Merge r.i.odule, VII-2

FILE-CONTROL par.wgraph
Indexed 1-0 mc.dule, VI-5
Relative 1-0 Tmodule, V-5
Sequential module, VI-4
Sort-Merge module, VII-2

File description entry , 1-59, 1-98
Indexed 1-0 inoJuln, VI-12
Relative 1-0 r.odule, V-11
Report Writer i;iodule, VIII-3
Sequential l-O module, lV-10

XV-A

Index

File-name, 1-59, 1-77
File Section, 1-97

Indexed I-O module, VI- 11
Relative 1-0 module, V-10
Report Writer module, VIII-2
Sequential 1-0 module, IV-9
Sort-Merge module, VII-5

FILE STATUS clause
Indexed 1-0 module, VI-5
Relative 1-0 module, V-5
Sequential 1-0 module, IV-4

FILE STATUS data item
Indexed 1-0 module, VI-2
Relative 1-0 module, V-2
Sequential 1-0 module, IV-1

FILLER, 11-15
FINAL

• CONTROL clause, VIII-28
SUM clause, VIII-42
TYPE clause, VIII-A5

FIRST, 11-68
FIRST DETAIL, VIII-36
Floating insertion editing, 11-23
FOOTING, VIII-A5
FOR, 11-68
Format punctxiation , 1-73
FROM phrase

ACCEPT statement, 11-53
PERFORM VARYING statement, 11-78
RELEASE statement, VII-12
SUBTRACT statement, 11-89
WRITE statement, IV- 35, V-32, VI-33

General format, 1-72
General rules, 1-72
GENERATE statement, VIII-51

CONTROL clause, VIII-28
Data-name, VIII-30
Imperative statement, 1-102
SUM clause, VIII-43
TERMINATE statemer.:, VIII-55

Generic terms, 1-73
GIVING phrase

ADD .statement, 11-55
DIVIDE statement, 11-61
MERGE statement, VII-8
MULTIPLY statement, 11-77
SORT statement, VII-14
SUBTRACT statement, 11-89

Glossary of COBOL terms, 1-52
GO TO statement, 11-65

ALTER statement, 11-57
Imperative statement, 1-102
MERGE statement, VII- 10
PERFORM statement, 11-80
SEARCH statement, III-9
Segmentation module, IX-6
SORT statement, VII-16
USE FOR DEBUGGING statement, XI-6,

XI-8
GREATER THAN relation, 11-41, 11-42
Group, 1-84
GROUP INDICATE clause, VIII-31

VALUE clause, 11-37

HEADING, VIII-45

HIGH-VALUE/KICU-VALUES, 1-81
Restriction, II-l

History of COBOL, XIV- 1

Identification Division, 1-94, II-2
Identifier, 1-90, 1-99
IF statement, 11-66

Conditional statement, I-lOl
Imperative statement, 1-102

Imperative sentence, 1-102
Imperative statement, 1-102
Implementation of the standard, 1-4
Implementor-def ined specifications, 1-7
Implementor-name , 1-59

Alphabet-name clause, II-8
ASSIGN clause, IV-4, V-5, VI-5, VII-2
RERUN clause, IV-6 , V-7, VI-8
SPECIAL-NAMES paragraph, II-8
VALUE OF clause, IV-19, V-16, VI-17,

VIII-50
Implicit, 1-91 Implied relational operator, 11-47
Implied subject, 11-47
IN qualifier connective, 1-79, 1-88
Incompatible data, 11-52
Indentation, 1-107
Index, 1-89
Index data item, III-5

Condition-name, 11-13
COOTROL clause, VIII-28
Initial value, 11-11
MOVE statement, 11-74

Index-name, 1-77, 1-89
OCCURS clause, III-2
PERFORM statement, 11-78
Relation condition, III-6
SEARCH statement, III-7
SET statement, III-ll

Indexed file, VI-1
Indexed 1-0 module, VI-1
Indexing, 1-89

Condition-name, 1-90
Conditional variable, 1-91
CONTROL clause, VIII-28
DEBUG-NA>IE, XI-7
MOVE statement, 11-74
OCCURS clause, III-2
Qualification, 1-90
RETURN statement, VII-13
Subscripting, 1-89

Indicator area, 1-105
COPY statement, X-4
Debugging line, XI-IO

INITIAL clause, XIII-3, XIII-4
INITIATE statement, VIII-53

GENERATE statement, VIII-52
Imperative statement, 1-102
OPEN statement, VIII-1
SUM clause, VIII-44
TERMINATE statement, VIII-55
USE BEFORE REPORTING statement,

VIII-56
Input-Output Section, I~95

Indexed 1-0 module, VI-5
Relative 1-0 module, V-5
Sequential 1-0 module, lV-4
Sort-Merge module, VII-2

XV-5

Index

INPUT PROCF.DIIRE phrase, VII-14
INSPECT RCatement, IT-68

I.inpRr;it i ve sC^iCeraent, 1-102
INSTAI-LATION paragraph, 1-9 A, II-2
Integer, 1-60
InLcr-Prof,rar,i Corraunication module, XII-1
Interna Lional Organization for

Standardization, XiV-S, XlV-10
INTO

DIVIDE statement, 11-61
READ statement, IV-28, V-23, VI-25
RETURN statement, VII- 13
STRING statement, 11-86

INVAIJD KEY condition, V-4, VI-A
DELETE statement, V-19, VI-20
READ statement, V-23, VI-24
REWRITE statement, V-26 , VI-28
START staten-,ent, V-28, VI-30
WRITE statement, V-32, VI-33,

I-O-CONTROL paragraph, 1-96 , \
Indexed I-O module, VI-8
Relative 1-0 module, V-7
Sequential 1-0 nodule, IV-6
Sort-Merge module, VII-3

ISO, XIV-8, XIV- 10

Journal of Development, XIV-2
JUST, 11-16
JUSTIFIED (JUST) clause, 11-16

Condition-name, 11-13
Figurative constant, 1-82
Standard alignment, 1-86
USAGE IS INDEX clause, III-5
VALUE clause, 11-37

KEY data-names
MERGE statement, VIT-8
SORT statement, VII-14

KEY phrase -
DISABLE statement, XlII-13.
ENABLE statement, XIII-15
Indexiid I/O alternate record key, VI-5
OCCURS clause, III-2, III-3, III-4

READ statement, VI-24 '
Relative I/O relative key, V-5
SEARCH statement, III-8
START statement, VI-30

Key word, 1-73, 1-79

LABEL RECORDS clause
Indexed 1-0 module, VI- 15
Relative 1-0 module, V-14
Report VJriter module, VIII-32
Sequential 1-0 module, IV-14

Language-name, 11-63
LAST DETAIL, VI 11-36
LEADING

INSPECT statement, 11-58
SIGN clause, 11-31

LEFT, 11-33
LESS THAN relation, 11-42
Level Indicator, 1-107
Levcl-nuiuber , 1-84, 11-13, 11-17

Data description entry, 11-12
Notation, 1-73
Qualifier, 1-87

Level-number (continued)
Reference foi-mat, T-107
Report group des.ription entry, VIII-6

Library module, X- 1
Library-nami , 1-77, X-2
LINAGE clause, IV- 15
LINAGE-COUNTER, IV- 3, IV- 16
LINE-COUNTER, Vlll-i, VIII-5

Final setting rules, VIII-13, VIII-15
VIII-18, VIII-23

Special register, 1-80
Subscripting, 1-89

LINE NUMBER clause, VlII-33
Notation, VIII-10
Sequence substitution, VIII-11

Linkage Section, XI 1-2
VALUE clause, 11-37

List of elements by module, I-IO
List of elements showing dispositiort, I- 40

Literal, 1-80
CURRENCY SIGN clause, II-8, 11-10
STOP statement, 11-85

Logical connective, 1-79
Logical operator, 11-45
LOW-VALUE/LOW-VALUES , 1-8 1

Restriction, II-l ■

MEMORY SIZE clause, II-6
MERGE statement, VII-C

Imperative stateL;ent, 1-102
OPEN statement, TV-24
Segmentation, IX-6
USE FOR DEBUGGING statement, XI-8

MESSAGE COUNT clause, XIII-3, XIII-4
MESSAGE DATE clause, XIII-3, XIII-4
MESSAGE TIME clause, XIII-3, XIII-4
Minus (-) PICTURE syciol, 11-21
Mnemonic-name, 1-78
.ACCEPT statement, 11-53
DISPLAY statement, 11-59
SEND statement, XlII-20
SPECIAL-NA-MES paragraph, II-8
WRITE statement, IV-34

MODULES, II-6
MOVE statement, II-7A

CORRESPONDING (CORK) , 11-74
Imperative statement, 1-102
Index data item, III-5
Overlapping operands, 11-51

MOVE CORRESPONDING (MOVE CORR) statement,
II- 74

MULTIPLE FILE clause, IV-6, IV-8
Multiple results in arithmetics, 11-51
MULTIPLY statement, 11-77

Composite of operands, 11-51
COMPUTE statement, 11-58
Conditional state^rsent, I-lOl
Data conversion, 11-51
Imperative statement, 1-102
Maximum operand size, 11-51
Multiple results, 11-51
SIZE ERROR phrase, 11-50

NATIVE phrase, II-8, II-9
Native character set, 1-62
Native collating sequence, 1-62

XV- 6

Index

Negated combined condition, 11-46
Negated simple condition, 11-45 KEXT phrase

Indexed I-O module, VI-24
Relative 1-0 module, V-23

NEXT GROUP clause, VIlI-35

Body group presentation rules, VIII-18 PAGE FOOTING presentation rules,
VIII-20

REPORT HEADING group presentation
rules, VIII- 13

Saved next group integer, VIII-U
KEXT PAGE phrase

LINE NU>ffiER clause, VIII-33 .
NEXT GRO'O? clause, VIII-35

NEXT SENTENCE phrase
IF statement, 11-66 ,
SEARCri statement, III-j7

NO DATA phrase, XIII- 17
Noncontiguous elementary item, 11-11

Level- number 77, 11-17
Nonnumeric comparison, 11-42
Nonnumeric literal, 1-80

Continuation , 1-106
NOT

Logical connective, 1-79
Logical operator, 11-45
Relational operator, 11-41

Notation rules, 1-72
Nucleus, II-l
Numeric category, 1-85, 11-18, 11-75
Numeric character, 1-63
Numeric class, 1-85, 11-43
Numeric comparison, 11-42
Numeric edited category, 1-85, 11-19,

11-75
Numeric literal, 1-80

OBJECT-COMPUTER paragraph, II-6
Occurrence number, III-3
OCCURS clause, III-2

CORRESPONDING phrase, 11-51
MOVE statement, 11-76
REDEFIN'ES clause, 11-27
RENAMES clause, 11-29
SEARCH statement, III-7
SYNCHRONIZED clause, 11-34
USE FOR DEBUGGING statement, XI-5
VALUE clause, 11-36

OF qualifier connective, 1-79, 1-88
OFF STATUS phrase, II-8
ON SIZE ERROR phrase, 11-50
ON STATUS phrase, I 1-8
OPEN statement

CLOSE statement, IV-22, V-18, VI-19

Imperative statement, 1-102
Indexed 1-0 module, VI-21
INITIATE statement, VIII-53
1-0 status, IV- 1, V-2, VI-2
LINAGE clause, IV- 16
READ statement, IV-28, V-23, VI-24
Relative 1-0 module, V-20
REPORT clause, VlII-40
Report Writer module, VIII- 1
REWRITE statement, IV-31, V-26, VI-28

Sequential 1-0 module, IV-24

OPEN statement (continued)

START statement, V-28, VI-30
USE FOR DEBUGGING statement, XI-5
WRITE statement, IV- 34, V-32 , VI-33

Operands, 11-41, 11-51
Operational sign, 1-86
Operator

Arithmetic, 11-39

Logical, 11-45
Relational, 11-42

OPTIONAL phrase, IV-4
CLOSE statement, IV-23
READ statement, IV-29

Optional word, 1-73, 1-79
OR phrase, 11-91, 11-92
OR logical connective, 1-79, 11-45 Abbreviated combined relation

condition, 11-47
Hierarchy, 11-48

ORGANIZATION IS INDEXED clause, VI-5
ORGANIZATION IS RELATIVE clause, V-5
ORGANIZATION IS SEQUENTIAL clause, IV-4

OUTPUT PROCEDURE phrase, VII-8, VII-13

Overall language consideration, 1-72 OVERFLOW phrase
CALL statement, XI.I-5
STRING statement, 11-86
UNSTRING statement, 11-91

Overlapping operands
Nucleus, 11-51
Table Handling module, III-6

Overlays, IX-2
'P' PICTURE symbol, 11-20
PAGE

SEND statement, XIII-20
WRITE statement, IV-36

PAGE clause, VIII-35
PAGE-COUNTER, VIII-1, VIII-4

Special register, 1-80
Subscripting, 1-89

PAGE FOOTING (PF) , VIII-45
PAGE FOOTING presentation rules table,

VIII-20
PAGE HEADING (PH) , VIII-45
PAGE HEADING group presentation rules

table, VIII-14
Paragraph, 1-99, 1-107
Paragraph header, 1-107
Paragraph-name, 1-77, 1-99, 1-107

Qualified, 1-88
Parentheses, 11-39

Condition, 11-46
Indices, 1-89 ■PICTURE clause, 11-19

Separators, 1-75
Subscripts, 1-89

PERFORM statement, 11-78

Imperative statement, 1-102
USE FOR DEBUGGING statement, XI-4 ,

XI-6, XI-8
USE statement, IV-32, V-30, VI-32

Period, 1-74, 1-99
Separator, 1-75

Period (.) PICTURE symbol, 11-21

PF, VIII-45

XV-

7

Index

PH, VIII-45
Phrase, 1-64, 1-72
PIC clause, 11-18
PICTURE charactcr-scring, 1-82
PICTURE (PIC) clause, 11-18

BLANK WHEN ZERO clause, II-U
COMPUTATIONAL clause, 11-35
CURRENCY SIGN clause, II-IO
DECIMAL POINT IS COMMA clause, 11-10
Linkage Section, XII-2
SYNCHRONIZED clause, 11-33
USAGE IS INDEX clause, III-5
Working-Storage Section, II-ll

PLC, XIV-2, XIV- 10
Plus (+) PICTURE symbol, II-2I
POINTER phrase

STRING statement, 11-86
UNSTRING statement, 11-93

Precedence rules for PICTURE character-
string, 11-24 I

Procedure, 1-99
Procedure Division, 1-99

Communication module, XIII-12
Debug nodule, XI-4
Indexed I-O module, VI-18
Inter-Program Communication module,

XI 1-4
Nucleus, 11-39
Relative 1-0 module, V-17
Report Writer module, VIII-51
Sequential 1-0 module, IV-20
Sort-Merge module, VII-8
Table Handling module, III-6

Procedure Division header, I-lOO, XII-4
Procedure-name, 1-65

Qualifier, 1-88
PROGRAM- ID paragraph, II-3
Program-name, 1-77

CALL statement, XII-5
CANCEL statement, XII-7

Programming Language Committee (PLC) ,
XIV-2, XIV- 10

PROGRAM COLLATING SEQUENCE clause,

II-6 Pseudo-text delimiters, 1-76, X-2
Punctuation characters, 1-65

Format punctuation, 1-73
Separators, 1-75

Qualification, 1-87
CD entry, XIII-5, XIII-6
CONTROL clause, VIII-28
COPY statement, X-2
CORRESPONDING phrase, 11-51
DEBUG-NAME, XI-7
LINE-COUNTER, VIII-5
Linkage Section, XII-2
MERGE statement, VII-8
OCCURS clause, III-2
PAGE-COUNTER, VIII-4
Qualifier connective, 1-79
READ statement, VI-24

' RELEASE statement, VII-12
RENAMES clause, 11-29
Restriction, II-l
RBffilTE statement, IV-31, V-26, VI-28
SORT statement, VII-14

Qualification (continued)
START statement, V-28, VI-30
VALUE OF clause, IV-19, V-16, V1--1J,

VIII-50
Working-Storage Section, 11-11
WRITE statement, IV- 34, V-32, VI-33

Queue, 1-65 Quotation mark
Separator, 1-75

QUOTE/QUOTES, 1-81, II-l

RD entry, VIII-2
RD level indicator, 1-107, VIII-4
READ statement

CLOSE statement, IV-22
DELETE statement, V-19, VI-20
Indexed I-O module, VI-24
OPEN statement, IV-25, V-21, VI-22
Relative I-O module, V-23
REWRITE statement, V-26, VI-28
Sequential I-O module, IV-28
USE FOR DEBUGGING statement, XI-5

RECEIVE statement, XIII-17
USE FOR DEBUGGING statement, XI-6

Record

Logical, 1-83
Physical, 1-83 RECORD CONTAINS clause
Indexed I-O module, VI-16
Relative I-O module, V-15
Report Writer module, VIII-39
Sequential I-O module, IV-18
Sort-Merge module, VII-7

Record description entry, 1-66, 1-97,
1-98

Indexed I-O module, VI-11
Relative I-O module, V-IO
Sequential I-O module, IV-9

RECORD KEY clause, VI-1 , VI-5, VI-7
Record-name, 1-77
REDEFINES clause, 11-27

REEL, IV-20 Reference fornoat, 1-105
Restrictio.B, II-l
Text-words, X-4

Relation character, 1-66
Relation condition, 11-41

Abbreviated combined, 11-47
Index data item, III-6
Index-name, III-6
MERGE statement, VII-9
Nonnumeric operands, 11-42
Numeric operands, 11-42
SORT statement, VII-15

Relational operator, 11-41
Relative file, V-1
Relative indexing, 1-89
Relative I-O raodule, V-1
RELATIVE KEY phrase, V-5

READ stateiaent, V-25
REWRITE statement, V-27
START statement, V-29
WRITE stateinent, V-33

Relative record number, V-1, V-6. V-33
RELEASE statement, VII-12

Imperative statement, 1-102

XV- 8

Index

RV.MAIKDER phrase, 11-61, 11-62
RENAMES clause, 11-29

Level-auraber , 1-84, 11-17
RlPLACING phrase, 11-68, X-2
REPORT clause, VIII-40
Report description entry, 1-67, VIII-2,

VIII-4
REPORT FOOTING (RF) , VIII-45
REPORT FOOTING presentation rules Cable,

VIII-21, VIII-22
Report group description entry, 1-67,

VIII-2, VIII-6
REPORT HEADING (Rll) , VIII-45
REPORT HE.U)ING group presentation rules

table, VIII-11, VIII-12
Report-name, 1-77
Report Section, 1-107, VIII-2
Report Writer module, VIII-1
RERUN clause

Indexed I-O nodule, VI-8
Relative 1-0 module, V-7
Sequential 1-0 module, IV-6

P<£SERVE AREA/ AREAS clause
Indexed 1-0 nodule, VI-5
Relative 1-0 module, V-5
Sequential 1-0 module, IV-4

Reserved word, 1-79, 1-109
Reserved word list, 1-109
RESET phrase, VIII-42
RETURN statement, VII-13

Conditional statement, I- 101
Revision history, XIV-9
REWRITE statement

Indexed 1-0 module, VI-28
OPEN statement, IV-25, V-21, VI-22
Relative 1-0 module, V-26
Sequential 1-0 nodule, IV-31
USE FOR DEBUGGING statement, XI-5 , T . -

XI-6
RF, VIII-45
RH, VIII-45
RIGHT, 11-16, 11-33
Rolling forward, VIII-43, VIII-48
ROUNDED phrase, 11-50
Routine-name, 1-77, 11-63
RUN, 11-85

'S' PICTURE symbol, 11-20
SAME AREA clause

Indexed 1-0 module, VI-8
Relative 1-0 modulo, V-7
Sequential 1-0 module, IV-6

SAME RECORD AREA clause
Indexed 1-0 module, VI-8.
Relative 1-0 nodule, V-7
Sequential 1-0 nodule, IV-6
Sort-Merge module, VII-3

SAME SORT AREA clause, VII-3
SAME SORT-MERGE AREA clause, VII-3
SD level indicator, 1-107, VII-5
SEARCH statement, III-7

Conditional statement, I-lOl
USAGE IS INDEX clause, III-5

Section, 1-99, 1-106
Section header, 1-106 ''
Section-name, 1-77

SECURI'TY paragraph, II-2

Segment, IX-2 SEGMENT-LIMIT clause, IX-5
Segment-number, 1-77, IX-4
SEGMENT phrase, XIII- 17
Segmentation, IX-2

CALL statement, XII-6
MERGE statement, VII-10
SORT statement, VII-17

Segmentation module, IX-1
SELECT clause

Indexed 1-0 module, VI-5
Relative 1-0 module, V-5
Sequential 1-0 module, IV-4
Sort-Merge module, VII-2

Semicolon
Connective, 1-79
Interchangeable with comma, I-.73
Library' text-word, X-3
Punctuation character, 1-73
Restriction, II-l

SEND statement, XIII-20
SPECIAL-N.-XMES paragraph, II-9
USE FOR DEBUGGING statement, XI-6

Sentence, 1-99, I-lOl, 1-102 '
Separator, 1-75

Restriction, II-l
SEQUENCE clause, II-6
Sequence number, 1-106
Sequential file, IV-1
Sequential 1-0 module, IV-1
Series connective, 1-79
SET statement, III-ll

Imperative statement, 1-102
Overlapping operands, 11-51, III-6
SEARCH staternent, III-IO
USAGE IS INT)EX clause, III-5

SIGN clause, 11-31
Class condition, 11-43
MOVE statement, 11-75
Operational sign, 1-86
PICTURE clause, 11-20

Sign condition, 11-44
Simple condition, 11-41
SIZE ERROR phrase, 11-50

Conditional statement, I-lOl
SORT statement, VII-14

Imperative statement, 1-102
OPEN statement, IV-24
Segmentation, IX-7
USE FOR DEBUGGING statement, XI-8

Sort-merge file description entry, 1-69,

VII-5 Sort-Merge module, VII-1
SOURCE clause, VIII-41
SOURCE-COMPUTER paragraph, II-5

WITH DEBUGGING MODE phrase, XI-3
Source program, 1-69, 1-105

COPY statement, X-2

Space Library text-word, X-3
Separator, 1-75

SPACE/SPACES, 1-81
Restriction, II-l

Special character, 1-70, 1-74
Special-character words, 1-80

XV-9

Index

SPECTAL-NAMES paragraph, 11-8
ACCEPT statement, 11-53
Condition-name, 1-78

. . DISPLAY statement, 11-59
Mnemonic-name, I- 78
Switch-status condition, 11-44
WRITE statement, IV- 34

Special registers, 1-80
DEBUG- ITEM, XI- 1
LINAGE-COUNTER, lV-3
LINE-COUNTER, VII I- 1
PAGE- COUNTER, VlII-1

Standard alignment rules, 1-86
Standard data format, 1-70, 1-82
STAKD/UlD-l phrase, 11-8, 11-9
START statement

Indexed 1-0 module, VI-30
OPEN statement, V-21, VI-22
READ statement, V-25, Vl-26
Relative I-O module, V-28
USE FOR DEBUGGING statement, XI-5

Statement, 1-72, 1-99, I-lOl, 1-102
Status key

Indexed 1-0 module, VI-2
Relative 1-0 module, V-2
Sequential 1-0 module, IV-2

STATUS KEY clause, XlIl-3, XIll-5
ENABLE statement, XlII-16
SEND statement, XIII-21

STOP statement, 11-85
Figurative constant, 1-82
Imperative statement, 1-102

STRING statement, 11-86
Figurative constant, 1-82
Imperative statement, 1-102
Overlapping operands, 11-51

'■ SUB-QUEUE, XI 1 1- 3
Subscripting, 1-89

Condition-name, 1-91
Conditional variable, 1-91
CONTROL clause, VIII-28
Qualification, 1-88

Subtotalling, VIII-43
SUBTRACT statement, 11-89

Composite of operands, 11-51
COMPUTE statement, 11-58
Conditional statement, I-lOl
CORRESPONDING (CORR) , 11-89
Data conversion, 11-51
Decimal alignment, 11-51
Imperative statement, 1—102
Maximum operand size, 11-51
Multiple results, 11-51

SUBTRACT CORRESPONDING (SUBTRACT CORR) ,
11-89

SUM clause, VllI-42
Sum counter, VIII-42

INITIATE statement, VIII-53
USE FOR DEBUGGING statement, XI-5

SUPPRESS statement, VIlI-54
Imperative statement, 1-102

Switch-status condition, 11-44
SYMBOLIC DESTINATION clause, XIII-3,

XIII-6
DISABLE statement, XIII-13
ENABLE statement, XIIl-15
RECEIVE statement, XIII-I7

SYMBOLIC SOURCE clause, XilI-3, XIII-4
SYMBOLIC SUS-QUi:UE-l, XIIl-3, XIII-4
SYMBOLIC SuB-QUEUE-2, XIII-3, XIII-4
SYMBOLIC SUB-<)UEUE-3, XlII-3, XIII-4
SYNC clause, 11-33
SYNCHRONIZED (SYNC) clause, 11-33

Elementary data item, 11-13
USAGE IS INDEX clause, III-5

Syntax rules, 1-72
System-name, 1-78

Table Handling module, III-l
TALLYING phrase

INSPECT statement, 11-68
UNSTRING statement, 11-91

TERMINAL phrase, XIlI-13, XIII-15
TERMINATE statement, VIII-55

GENERATE statement, VIII-52 .
Imperative statement, 1-102
INITIATE statement, VIIl-53
Sequential 1-0 module, VIII-1
SU"M clause, VIII-43
TYPE clause, VIII-47, VIH-49
USE statement, VIII-56

TEXT LENGTH clause, XIII-3, XIII-4
Text-name, 1-77, X-2

Qualified, 1-88 THROUGH (THRU)
MERGE statesient, VII-8
PERFORM statement, 11-78
RENAMES claiise, 11-29
SORT statecent, VII-14

VALUE clause. 11-36 ' THRU (See THROUGH)

TIME, 11-53
TIMES, 11-78
TRAILING, H-31
TYPE clause, ¥111-45

Unary arithmetic operator, 11-39
Unary minus, 11-39
Unary plus , 11-39
UNIT, IV-20
UNSTRING statement, 11-91

Figurative constant, 1-82
Imperative statement, 1-102
Overlapping operands, 11-51

UNTIL phrase, 11-80
UP BY, 111-11 UPON phrase

DISPLAY statement, 11-59
SUM clause, VIlI-42

USAGE clause, 11-35
Class condition, 11-43
INSPECT statement, 11-69
Relation condition, 11-41
SIGN clause. 11-31
STRING statement, 11-86
UNSTRING statement, 11-91

USAGE IS INDEX clause, III-5
CORRESPONDING phrase, 11-51
MOVE statememit, 11-74
SEARCH statetaent, III-8
Working-Storage Section, 11-11

USE statement
Compiler directing statement, I-lOl
Declarative statement, 1-99

XV-10

Index

USE statement (continued)
DELETE statement, V-19, VI-20
Indexed I-O module, VI-32
INVALID KEY condition, V-2 , VI-4
READ statement, IV-29 , V-23, VI-24
Relative 1-0 module, V-30
REUTIITE statement, V-26, VI-28
Sequential 1-0 module, IV-32
START statement, V-28, VI-30
WRITE statement, lV-37, V-32, VI-33

USE BEFORi-; REPORTING statement, VIII-36
USE FOR DEBUGGING statement, XI-4
User-defined words, 1-76
USING phrase

CALL statement, XII-5
Linkage Section, XII-2
MERGE statement, VII-8
Procedure Division header, XII-4
SORT statement, VII-14

'V' PICTURE symbol, 11-20
VALUE clause, 11-36
VALUE OF clause

Indexed 1-0 module, VI-17
Relative 1-0 module, V-16
Report Writer -module, VIII-50
Sequential 1-0 module, IV- 19

VARYING phrase
PERFORM statement, 11-81
SEARCH statement, III-9

Verbs, 1-79.

WHEN, III-7
Word, 1-76
Working-Storage Section, 1-97, 11-11
WRITE statement

Conditional statement, I- 101
Imperative statement, 1-102

WRITE statement (continued)
Indexed 1-0 module, VI-33
OPEN statejncnt, TV-25, V-21, VI-22
Relative 1-0 module, V-32
Sequential 1-0 module, IV-34
SPECIAL-NAMES paragraph, II-9
USE FOR DEBUGGING statement, XI-5, XI-6

'X' PICTURE symbol, 11-20
X3J4 technical committee, XIV-9
X3.4.4 working group, XIV-6
X3. 23-1968 document, XIV-8

'Z' PICTURE symbol, 11-20
ZERO/ZEROS/ZEROES, 1-81

Restriction, II-l

'0' PICTURE symbol, 11-21
'9' PICTURE symbol, 11-20
'66' RENAMES data description entry, 11-29
'77' item description entry, 11-11
'88' condition-naine data description

entry, 11-12, 11-13, 11-17

> relation, 11-41
< relation, 11-41 .
= relation, 11-41

+ operator, 11-39
+ PICTURE symbol, 11-21
- continuation line, 1-106
- operator, 11-39
- PICTURE symbol, 11-21
* comment line, 1-108
* operator, 11-39
* PICTURE symbol. 11-21
/ comment line, 1—108
/ operator, 11-39
/ PICTURE symbol, 11-21

. operator, 11-39
pseudo-text delimiter, 1-65

XV- 11

